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Motivation: computation information gaps

In some high dimensional statistical problems, computation-information gap are conjectured;

int err( f) << mft err( f)

Question: How can we quantify the optimal performance over estimators that are computable In
polynomial time”? How can we give evidence of the existence of a Computational gap?



(Tests: Hopkins ’18,
Estimation: Schramm/Wein ’22)

Low-Degree framework

* The notion of NP-hardness is worst case: not suitable for statistical problems where we seek to have
average-case hardness.

* We need to consider a model of computation: one of them is the model of low-degree polynomials.
We analyse the best performance achieved by a multivariate polynomial of low-degree D.

» Low degree D = log(n)'*" is used as a proxy for algorithms computable in polynomial time. Can
approximate most of classical statistical methods: spectral methods, AMP...

Goal: Given a statistical problem, what is the optimal performance of log(n)””—degree polynomial?



Contribution: Strategy for proving low degree lower bounds in some latent variable models with
gaussian noise.

Builds on Schramm/Wein 22 which proves a generic formula for Gaussian Additive models. In addition,
we leverage the presence of latent variables in the models we consider;

* Clustering
* Sparse Clustering
* Bi-clustering

We can characterize almost completely the different information-computational landscapes



Example: Computation-
Information Gap in Clustering
Gaussian mixtures



Isotropic Gaussian Mixture Model

Observation: Y, ..., ¥, €| 4. Feature Matrix Y € R

Model:
 Hidden partition G* = G;k, s G;? into K groups.

d

e Hidden vectors pq, ..., ugx € |

l

Goal: Estimate G*



. Separation: A := —min ||y, — u||*
2kl

n
. Assumption: the partition G* satisfies | G]f | =< = forallk € [1,K].

. Questions: What are the conditions on A, d, n and K to recover exactly/
partially the partition G*

With



Low-dimensional regime n > poly(d, K)

* Frontier for partial recovery is [og(K)

e Liu/Li: when A% > 10g(K)1+C, algorithm computable in polynomial times achieves partial
recovery

* No computational gap in the low dimensional regime






Information threshold

Frontier for partial recovery: A? = log(K) + 1 | —K log(K). |
| n ‘

And, the exact K-means estimator is optimal both for partial and perfect recovery. “

Optimal estimator is not computable in polynomial time.
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Low degree Lower bound

Equivalent problem: estimate with LD polynomials x = 1 G

n

Hardness of clustering when
dK*

n

/ N\

Deviation of the norm of a Gaussian BBP threshold: eigenvalue/vectors of
YY! are informative.

Computational gap when K large and d > n/K?
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s it possible to recover G* in polynomial time above this threshold?

e FA%2> 1+ \/c_i then perfect recovery is possible in polynomial time

—log
using a Hierarchical clustering procedure. (Optimal whenn < KZ)

dK?

In very high dimension d > n and above the BBP threshold A* > \

partial recovery is possible in polynomial time using a Convex
Relaxation of the exact K-means estimator. (Giraud Verzelen 2018)

What about when n > K?and d <n?



Spectral Projection Method

. Compute the K leading eigenvectors of YY.

* Project the dataset on those eigenvectors.

* Proceed with a low-dimensional clustering procedure (Liu/LIl or Hierarchical clustering).

n
Excepts when n € [K?, K] and p < e we are able to recover exactly G* with high

pK*

n

probability when A >, 1 + \






Conclusion

* Almost full characterization of the regimes of clustering a Gaussian Mixture Model
* Exhibit the existence of Computational gap in high dimension

* Analysis of LD lower-bounds can also be done with additional sparsity assumption or for
more complex structures such as biclustering



