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Motivation: computation information gaps

inf
any ̂f

err( ̂f ) < < inf
̂f poly−time

err( ̂f )

Question: How can we quantify the optimal performance over estimators that are computable in 
polynomial time? How can we give evidence of the existence of a Computational gap?

In some high dimensional statistical problems, computation-information gap are conjectured;



Low-Degree framework

• The notion of NP-hardness is worst case: not suitable for statistical problems where we seek to have 
average-case hardness. 

• We need to consider a model of computation: one of them is the model of low-degree polynomials. 
We analyse the best performance achieved by a multivariate polynomial of  low-degree D. 

• Low degree  is used as a proxy for algorithms computable in polynomial time. Can 
approximate most of classical statistical methods: spectral methods, AMP…

D = log(n)1+η

Goal: Given a statistical problem, what is the optimal performance of -degree polynomial?log(n)1+η

(Tests: Hopkins ’18, 

Estimation: Schramm/Wein ’22)

Stat. Physics predictions



Contribution: Strategy for proving low degree lower bounds in some latent variable models with 
gaussian noise. 

Builds on Schramm/Wein 22 which proves a generic formula for Gaussian Additive models. In addition,  
we leverage the presence of latent variables in the models we consider;

• Clustering

• Sparse Clustering

• Bi-clustering

We can characterize almost completely the different information-computational landscapes



Example: Computation-
Information Gap in Clustering 
Gaussian mixtures



Isotropic Gaussian Mixture Model

• Hidden partition  into  groups.


•  Hidden vectors . 

• , if .

G* = G*1 , …, G*K K

μ1, …, μK ∈ ℝd

Yi
⊥⊥∼ 𝒩 (μk, Ip) i ∈ G*k
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Observation: . Feature Matrix  .Y1, …, Yn ∈ ℝd Y ∈ ℝn×d

Model:

Goal: Estimate G*



• Separation: .


• Assumption: the partition  satisfies  for all .


• Questions: What are the conditions on , ,  and  to recover exactly/ 
partially the partition  

Δ2 :=
1
2

min
k≠l

∥μk − μl∥2

G* |G*k | ≍
n
K

k ∈ [1,K]

Δ2 d n K
G*

Without any computational 
constraints?

With algorithms computable in polynomial time?
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Low-dimensional regime n ≥ poly(d, K)

• Frontier for partial recovery is 


• Liu/Li; when , algorithm computable in polynomial times achieves partial 
recovery


• No computational gap in the low dimensional regime 

log(K)

Δ2 ≥ log(K)1+c





Information threshold

Frontier for partial recovery: . 

And, the exact -means estimator is optimal both for partial and perfect recovery.


Δ2 ≍ log(K) +
d
n

K log(K)

K
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Optimal estimator is not computable in polynomial time. 





Low degree Lower bound 

Hardness of clustering when 

Δ2 ≤log d ∧
dK2

n
+ 1

Deviation of the norm of a Gaussian BBP threshold: eigenvalue/vectors of 
 are informative.YYT

Computational gap when  large and K d ≳ n/K2

Equivalent problem: estimate with LD polynomials x = 1
1 G*

∼ 2





Is it possible to recover  in polynomial time above this threshold?G*

• If , then perfect recovery is possible in polynomial time 
using a Hierarchical clustering procedure.  (Optimal when )


• In very high dimension  and above the BBP threshold , 

partial recovery is possible in polynomial time using a Convex 
Relaxation of the exact -means estimator. (Giraud Verzelen 2018)


Δ2 ≥log 1 + d
n ≤ K2

d ≥ n Δ2 ≳
dK2

n

K

What about when  and  ?n ≥ K2 d ≤ n



Spectral Projection Method
• Compute the  leading eigenvectors of . 


• Project the dataset on those eigenvectors.


• Proceed with a low-dimensional clustering procedure (Liu/LI or Hierarchical clustering).

K YYT

Excepts when  and , we are able to recover exactly  with high 

probability when .

n ∈ [K2, Kc] p ≤
n
K

G*

Δ2 ≥log 1 +
pK2

n





Conclusion

• Almost full characterization of the regimes of clustering a Gaussian Mixture Model


• Exhibit the existence of Computational gap in high dimension


• Analysis of LD lower-bounds can also be done with additional sparsity assumption or for 
more complex structures such as biclustering


   


