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Default (GPT-3.5)

Give one example of a classification algorithm

One example of a classification algorithm is the Logistic Regression algorithm. Logistic
Regression is a supervised learning algorithm used for binary or multi-class classification

problems. It is widelv used in various fields. includina healthcare for disease prediction.
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» Data: features x; € RP and labels y; € {—1,+1}.
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Logistic regression is...

n

arg min Z log(1 + eXP(—YiXiTV))
VERP oy



What is logistic regression used for?

a R

Prediction
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Problems of logistic regression
» Distribution of estimator 4 difficult to calculate
» Asymptotically normal.
» Approximation is bad if:
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*Hauck Jr and Donner [1977]
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*Zhao, Sur, and Candes [2022]
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What's the problem?
» Linear separation

» Monotone likelihood: v+ log(1 + exp(—yx7)).
» ||7][2 * oo implies Loss \, 0.

» This is likely, if: 0~ 0, n < 0o, p> 1.

= M g
T E

@



What's the problem?

"there is an urgent need for new research to provide guidance for
supporting sample size considerations for binary logistic regression”
van Smeden et al. [2016]



The model

Q%
2
2

B*

n i.i.d. observations (x;, y;) € RP x {—1,41}, where:
yi := sign(x.] B* + o€;)

Parameters 3* € SP~1 and ¢ > 0 unknown. We assume

(%) ~ N0, Ipi).
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f}/* = arg minE IOg(l + eXP(_yXTV))
YERP

n

= argmin’>log(1 + exp(—ypx 1))
VERP iy
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Apm = argmin Z log(1 + eXp(—YiXiTV))
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Classical asymptotics

E.g. van der Vaart [2000]:
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Classical asymptotics

E.g. van der Vaart [2000]:
Vn(Joe =7*) = N(0,1,35.)
Gives asymptotic rate (o < 1):

[P _ . [ p
— S oo =712 S/ =3
no no

Weird.



Solution: Treat classification separately
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Solution: Treat classification separately

. . A *
Classification error || — %
1302 vz )|
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el S Noi
= -z oiseless rate
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Noise level o

» Asymptotic upper bound®: \/a3p/n if o < 1.
» Finite sample rate p/n if ¢ = 0 [Balcan and Long, 2013]

» This cannot be the finite sample rate!
What happens if o is small?

8Taking |[§o0 — V*[l2 ~ /2

no



Solution: Large and small noise regime

Noise level o ~
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Solution:

Large and small noise regime

Noise level o ~ m Small || Large
Classification H Hglh - H«?**Hz ) Easy || Hard
Confidence |||5]l2 = [[7*]|2| Hard || Easy

» What is ‘small/large’?

» Problems if strong signal, few observations or high dimension
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Main result

Theorem (K & van de Geer, 2023)
Let t > 0 and:

P plogn+t§
n

L

Then with probability at least 1 — 5exp(—t),

Regime o<sr r<o<1
. . /\;/ o ’Y* < ,’}\/ . ’7* <
Classification | ||y = 2| S || ||y — ], 5 V@7
| o )
Confidence | 52zt | ke~ In"lbl S /B




Classification error VS noise level

Classification error

Here r :

S~

— plogn

-------- Noiseless

Noise level o



Classification error VS sample size
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Classification error VS sample size

o

g

sample size |og -

» Improving performance is “cheaper” for small n!
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How do we know which regime occurs?

Recall that r := &ng”.

Regime osr r<osl

Confidence || [4ll2 2 2 || lIAll2— "Il £ V&

It follows that:

1912 2

=> small noise regime
plogn

19ll2 S

= large noise regime
plogn
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What can we say if the data is separable?

» ‘large noise’ o 2> plog(n)/n = not separable
» Separable = not large noise! (whp)

» Same rate as noiseless case (up to log n)
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» Split loss in two parts, treat separately:

log(1 + exp(—|xT~])) + [x"~[1{yx "~ < 0}

» Quantify distance to v* with:

\/H’Y 2

» Lower bound excess risk with Taylor expansion + convexity

Lz = a2
[l

H’Y||2 ||’Y H2

» Upper bound excess risk with empirical process theory
Bernstein & Bousquet's inequality, localization, peeling
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Some ideas of proof: o < r

» Problem: possibly ||[v*||2 £ M, maybe P,/(~v*) < Pnl(%).
» Exploit linearity of ||7y|l2 = |xT~|1{yxTy < 0},

compare 4 to MH2II'7W

Exploit that log(1 + exp(—|x"~|)) is small if ||v||2 is huge.

» New problem: need to control ||9]|2.
Three case distinctions:

> M/2 > |[A]2 > 6> |42

» Lower bound excess risk using Gaussian tail bounds.

» Upper bound similar as before (angles - easier).
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Final slide

Logistic regression has problems if:

(] o
"\‘ T T
~ .
C T
o small’ n small® p large®
New:
n '>Pr d'ction-
1
» Fast classification if |92 2 Slogn: RS
ference
> Parametric rate if [|9]]2 S jo7, (o

"Hauck Jr and Donner [1977]
&Nemes et al. [2009]
°Zhao, Sur, and Candes [2022]



Merci pour votre attention!

a R

Prediction
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