Logistic Regression with small noise or few samples¹ Fréjus 2023

Felix Kuchelmeister, joint work with Sara van de Geer, ETH Zürich

September 19, 2023

Give one example of a classification algorithm

Default (GPT-3.5)

FE Give one example of a classification algorithm

One example of a classification algorithm is the **Logistic Regression** algorithm. Logistic Regression is a supervised learning algorithm used for binary or multi-class classification problems. It is widely used in various fields, including healthcare for disease prediction.

What is logistic regression?

- ▶ Data: features $x_i \in \mathbb{R}^p$ and labels $y_i \in \{-1, +1\}$.
- $y_i = sign(x_i^T \beta^* + \sigma \epsilon_i), \ \|\beta^*\|_2 = 1, \ \sigma > 0.$

What is logistic regression?

- ▶ Data: features $x_i \in \mathbb{R}^p$ and labels $y_i \in \{-1, +1\}$.
- $y_i = sign(x_i^T \beta^* + \sigma \epsilon_i), \ \|\beta^*\|_2 = 1, \ \sigma > 0.$

What is logistic regression?

- ▶ Data: features $x_i \in \mathbb{R}^p$ and labels $y_i \in \{-1, +1\}$.

Logistic regression is...

$$\underset{\gamma \in \mathbb{R}^p}{\operatorname{arg\,min}} \sum_{i=1}^n \log(1 + \exp(-y_i x_i^T \gamma))$$

What is logistic regression used for?

▶ Distribution of estimator $\hat{\gamma}$ difficult to calculate

²Hauck Jr and Donner [1977]

³Nemes et al. [2009]

⁴Zhao, Sur, and Candes [2022]

- ▶ Distribution of estimator $\hat{\gamma}$ difficult to calculate
- Asymptotically normal.

²Hauck Jr and Donner [1977]

³Nemes et al. [2009]

⁴Zhao, Sur, and Candes [2022]

- ▶ Distribution of estimator $\hat{\gamma}$ difficult to calculate
- Asymptotically normal.
- Approximation is bad if:

²Hauck Jr and Donner [1977]

³Nemes et al. [2009]

⁴Zhao, Sur, and Candes [2022]

- ightharpoonup Distribution of estimator $\hat{\gamma}$ difficult to calculate
- Asymptotically normal.
- ► Approximation is bad if:

 $\sigma \text{ small}^2$

²Hauck Jr and Donner [1977]

³Nemes et al. [2009]

⁴Zhao, Sur, and Candes [2022]

- ightharpoonup Distribution of estimator $\hat{\gamma}$ difficult to calculate
- Asymptotically normal.
- ► Approximation is bad if:

 σ small²

n small³

²Hauck Jr and Donner [1977]

³Nemes et al. [2009]

⁴Zhao, Sur, and Candes [2022]

- ightharpoonup Distribution of estimator $\hat{\gamma}$ difficult to calculate
- Asymptotically normal.
- Approximation is bad if:

 σ small²

n small³

p large⁴

²Hauck Jr and Donner [1977]

³Nemes et al. [2009]

⁴Zhao, Sur, and Candes [2022]

► Linear separation

Linear separation

- ▶ Monotone likelihood: $\gamma \mapsto \log(1 + \exp(-yx^T\gamma))$.
- ▶ $\|\gamma\|_2 \nearrow \infty$ implies Loss $\searrow 0$.
- ▶ This is likely, if: $\sigma \approx 0$, $n \ll \infty$, $p \gg 1$.

"there is an urgent need for new research to provide guidance for supporting sample size considerations for binary logistic regression" van Smeden et al. [2016]

The model

n i.i.d. observations $(x_i, y_i) \in \mathbb{R}^p \times \{-1, +1\}$, where:

$$y_i := sign(x_i^T \beta^* + \sigma \epsilon_i)$$

Parameters $\beta^* \in S^{p-1}$ and $\sigma > 0$ unknown. We assume $(x, \epsilon) \sim \mathcal{N}(0, I_{p+1})$.

The model

n i.i.d. observations $(x_i, y_i) \in \mathbb{R}^p \times \{-1, +1\}$, where:

$$y_i := sign(x_i^T \beta^* + \sigma \epsilon_i)$$

Parameters $\beta^* \in S^{p-1}$ and $\sigma > 0$ unknown. We assume $(x, \epsilon) \sim \mathcal{N}(0, I_{p+1})$.

$$\gamma^* := \operatorname*{arg\;min}_{\gamma \in \mathbb{R}^p} \mathbb{E} \log(1 + \exp(-yx^T\gamma))$$

The model

n i.i.d. observations $(x_i, y_i) \in \mathbb{R}^p \times \{-1, +1\}$, where:

$$y_i := sign(x_i^T \beta^* + \sigma \epsilon_i)$$

Parameters $\beta^* \in S^{p-1}$ and $\sigma > 0$ unknown. We assume $(x, \epsilon) \sim \mathcal{N}(0, I_{p+1})$.

$$\gamma^* := \operatorname*{arg\;min}_{\gamma \in \mathbb{R}^p} \mathbb{E} \log(1 + \exp(-yx^T\gamma))$$

Estimation

$$\gamma^* := \mathop{\arg\min}_{\gamma \in \mathbb{R}^p} \mathbb{E} \log(1 + \exp(-y \mathbf{x}^T \gamma))$$

Estimation

$$egin{aligned} \gamma^* &:= rg \min_{\gamma \in \mathbb{R}^p} \mathbb{E} \log (1 + \exp(-yx^T \gamma)) \ & \ ``\hat{\gamma}_{\infty} &:= rg \min_{\gamma \in \mathbb{R}^p} \sum_{i=1}^n \log (1 + \exp(-y_i x_i^T \gamma))" \end{aligned}$$

Estimation

$$egin{aligned} \gamma^* &:= rg \min_{\gamma \in \mathbb{R}^p} \mathbb{E} \log(1 + \exp(-yx^T \gamma)) \ & \ ``\hat{\gamma}_\infty &:= rg \min_{\gamma \in \mathbb{R}^p} \sum_{i=1}^n \log(1 + \exp(-y_i x_i^T \gamma))" \ & \ \hat{\gamma}_M &:= rg \min_{\|\gamma\|_2 \leq M} \sum_{i=1}^n \log(1 + \exp(-y_i x_i^T \gamma)) \end{aligned}$$

Classical asymptotics

E.g. van der Vaart [2000]:

$$\sqrt{n}(\hat{\gamma}_{\infty} - \gamma^*) \rightarrow \mathcal{N}(0, I_{\sigma, \beta^*}^{-1})$$

Classical asymptotics

E.g. van der Vaart [2000]:

$$\sqrt{n}(\hat{\gamma}_{\infty} - \gamma^*) \rightarrow \mathcal{N}(0, I_{\sigma, \beta^*}^{-1})$$

Gives asymptotic rate ($\sigma \lesssim 1$):

$$\sqrt{\frac{p}{n\sigma}} \lesssim \|\hat{\gamma}_{\infty} - \gamma^*\|_2 \lesssim \sqrt{\frac{p}{n\sigma^3}}$$

Weird.

Solution: Treat classification separately

▶ Asymptotic upper bound⁵: $\sqrt{\sigma^3 p/n}$ if $\sigma \lesssim 1$.

Solution: Treat classification separately

Classification error
$$\left\|\frac{\hat{\gamma}}{\|\hat{\gamma}\|_2} - \frac{\gamma^*}{\|\gamma^*\|_2}\right\|_2$$

$$\downarrow p \\ n$$
Noiseless rate
$$\downarrow p \\ Noise level $\sigma$$$

- ► Asymptotic upper bound⁶: $\sqrt{\sigma^3 p/n}$ if $\sigma \lesssim 1$.
- ▶ Finite sample rate p/n if $\sigma = 0$ [Balcan and Long, 2013]

Solution: Treat classification separately

Classification error
$$\left\|\frac{\hat{\gamma}}{\|\hat{\gamma}\|_2} - \frac{\gamma^*}{\|\gamma^*\|_2}\right\|_2$$

$$\frac{p}{n}$$
Noise level σ

- ► Asymptotic upper bound⁶: $\sqrt{\sigma^3 p/n}$ if $\sigma \lesssim 1$.
- ▶ Finite sample rate p/n if $\sigma = 0$ [Balcan and Long, 2013]
- This cannot be the finite sample rate! What happens if σ is small?

Noise level $\sigma \sim rac{1}{\ \gamma^*\ _2}$	Small	Large

Noise level $\sigma \sim rac{1}{\ \gamma^*\ _2}$	Small	Large
Classification $\left\ \frac{\hat{\gamma}}{\ \hat{\gamma}\ _2} - \frac{\gamma^*}{\ \gamma^*\ _2} \right\ _2$	Easy	Hard

Noise level $\sigma \sim rac{1}{\ \gamma^*\ _2}$	Small	Large
Classification $\left\ \frac{\hat{\gamma}}{\ \hat{\gamma}\ _2} - \frac{\gamma^*}{\ \gamma^*\ _2} \right\ _2$	Easy	Hard
Confidence $ \ \hat{\gamma}\ _2 - \ \gamma^*\ _2 $	Hard	Easy

Noise level $\sigma \sim rac{1}{\ \gamma^*\ _2}$	Small	Large
Classification $\left\ \frac{\hat{\gamma}}{\ \hat{\gamma}\ _2} - \frac{\gamma^*}{\ \gamma^*\ _2} \right\ _2$	Easy	Hard
Confidence $ \ \hat{\gamma}\ _2 - \ \gamma^*\ _2 $	Hard	Easy

- ► What is 'small/large'?
- Problems if strong signal, few observations or high dimension

Noise level $\sigma \sim rac{1}{\ \gamma^*\ _2}$	Small	Large
Classification $\left\ \frac{\hat{\gamma}}{\ \hat{\gamma}\ _2} - \frac{\gamma^*}{\ \gamma^*\ _2} \right\ _2$	Easy	Hard
Confidence $ \ \hat{\gamma}\ _2 - \ \gamma^*\ _2 $	Hard	Easy

- ► What is 'small/large'?
- ▶ Problems if strong signal, few observations or high dimension

 $\sigma \leq \frac{p}{n}$

Main result

Theorem (K & van de Geer, 2023)

Let t > 0 and:

$$r := \frac{p \log n + t}{n} \lesssim 1, \quad M \gtrsim \frac{1}{r}.$$

Then with probability at least $1-5\exp(-t)$,

Regime	$\sigma \lesssim r$	$r \lesssim \sigma \lesssim 1$
Classification	$\left\ \frac{\hat{\gamma}}{\ \hat{\gamma}\ } - \frac{\gamma^*}{\ \gamma^*\ _2} \right\ _2 \lesssim r$	$\left\ \frac{\hat{\gamma}}{\ \hat{\gamma}\ } - \frac{\gamma^*}{\ \gamma^*\ _2} \right\ _2 \lesssim \sqrt{\sigma r}$
Confidence	$\ \hat{\gamma}\ _2 \gtrsim \frac{1}{r}$	$ \hat{\gamma} _2 - \gamma^* _2 \lesssim \sqrt{\frac{r}{\sigma^3}}$

Classification error VS noise level

Here $r := \frac{p \log n}{n}$.

Classification error VS sample size

Classification error VS sample size

▶ Improving performance is "cheaper" for small *n*!

How do we know which regime occurs?

Recall that $r := \frac{p \log n}{n}$.

Regime	$\sigma \lesssim r$	$r \lesssim \sigma \lesssim 1$
Confidence	$\ \hat{\gamma}\ _2 \gtrsim \frac{1}{r}$	$ \hat{\gamma} _2 - \gamma^* _2 \lesssim \sqrt{\frac{r}{\sigma^3}}$

How do we know which regime occurs?

Recall that $r := \frac{p \log n}{n}$.

Regime	$\sigma \lesssim r$	$r \lesssim \sigma \lesssim 1$
Confidence	$\ \hat{\gamma}\ _2 \gtrsim \frac{1}{r}$	$ \hat{\gamma} _2 - \gamma^* _2 \lesssim \sqrt{\frac{r}{\sigma^3}}$

It follows that:

$$\|\hat{\gamma}\|_2 \gtrsim \frac{n}{p \log n} \Rightarrow \text{small noise regime}$$

 $\|\hat{\gamma}\|_2 \lesssim \frac{n}{p \log n} \Rightarrow \text{large noise regime}$

What can we say if the data is separable?

What can we say if the data is separable?

• 'large noise' $\sigma \gtrsim p \log(n)/n \Rightarrow$ not separable

What can we say if the data is separable?

- ▶ 'large noise' $\sigma \gtrsim p \log(n)/n \Rightarrow$ not separable
- ▶ Separable \Rightarrow not large noise! (whp)
- ► Same rate as noiseless case (up to log n)

▶ Split loss in two parts, treat separately:

$$\log(1 + \exp(-|\boldsymbol{x}^T\boldsymbol{\gamma}|)) + |\boldsymbol{x}^T\boldsymbol{\gamma}| 1\{\boldsymbol{y}\boldsymbol{x}^T\boldsymbol{\gamma} < 0\}$$

▶ Split loss in two parts, treat separately:

$$\log(1 + \exp(-|\boldsymbol{x}^T \boldsymbol{\gamma}|)) + |\boldsymbol{x}^T \boldsymbol{\gamma}| 1\{\boldsymbol{y} \boldsymbol{x}^T \boldsymbol{\gamma} < 0\}$$

▶ Quantify distance to γ^* with:

$$d_*(\gamma) := \sqrt{\|\gamma^*\|_2 \left\| \frac{\gamma}{\|\gamma\|_2} - \frac{\gamma^*}{\|\gamma^*\|_2} \right\|_2^2 + \frac{\|\|\gamma\|_2 - \|\gamma^*\|_2^2}{\|\gamma^*\|_2^3}}$$

Split loss in two parts, treat separately:

$$\log(1 + \exp(-|\boldsymbol{x}^T \boldsymbol{\gamma}|)) + |\boldsymbol{x}^T \boldsymbol{\gamma}| 1\{\boldsymbol{y} \boldsymbol{x}^T \boldsymbol{\gamma} < 0\}$$

▶ Quantify distance to γ^* with:

$$d_*(\gamma) := \sqrt{\|\gamma^*\|_2 \left\| \frac{\gamma}{\|\gamma\|_2} - \frac{\gamma^*}{\|\gamma^*\|_2} \right\|_2^2 + \frac{\|\|\gamma\|_2 - \|\gamma^*\|_2^2}{\|\gamma^*\|_2^3}}$$

▶ Lower bound excess risk with Taylor expansion + convexity

Split loss in two parts, treat separately:

$$\log(1 + \exp(-|x^T \gamma|)) + |x^T \gamma| 1\{yx^T \gamma < 0\}$$

▶ Quantify distance to γ^* with:

$$d_*(\gamma) := \sqrt{\|\gamma^*\|_2 \left\| \frac{\gamma}{\|\gamma\|_2} - \frac{\gamma^*}{\|\gamma^*\|_2} \right\|_2^2 + \frac{\|\|\gamma\|_2 - \|\gamma^*\|_2^2}{\|\gamma^*\|_2^3}}$$

- ▶ Lower bound excess risk with Taylor expansion + convexity
- Upper bound excess risk with empirical process theory Bernstein & Bousquet's inequality, localization, peeling

▶ Problem: possibly $\|\gamma^*\|_2 \not\leq M$, maybe $P_n I(\gamma^*) < P_n I(\hat{\gamma})$.

- ▶ Problem: possibly $\|\gamma^*\|_2 \not\leq M$, maybe $P_n I(\gamma^*) < P_n I(\hat{\gamma})$.
- Exploit linearity of $\|\gamma\|_2 \mapsto |x^T\gamma| 1\{yx^T\gamma < 0\}$, compare $\hat{\gamma}$ to $\|\hat{\gamma}\|_2 \frac{\gamma^*}{\|\gamma^*\|_2}$. Exploit that $\log(1 + \exp(-|x^T\gamma|))$ is small if $\|\gamma\|_2$ is huge.

- ▶ Problem: possibly $\|\gamma^*\|_2 \not\leq M$, maybe $P_n I(\gamma^*) < P_n I(\hat{\gamma})$.
- Exploit linearity of $\|\gamma\|_2 \mapsto |x^T\gamma| 1\{yx^T\gamma < 0\}$, compare $\hat{\gamma}$ to $\|\hat{\gamma}\|_2 \frac{\gamma^*}{\|\gamma^*\|_2}$. Exploit that $\log(1 + \exp(-|x^T\gamma|))$ is small if $\|\gamma\|_2$ is huge.
- New problem: need to control $\|\hat{\gamma}\|_2$. Three case distinctions:

$$\|\hat{\gamma}\|_2 \ge M/2 \ge \|\hat{\gamma}\|_2 \ge 6 \ge \|\hat{\gamma}\|_2.$$

- ▶ Problem: possibly $\|\gamma^*\|_2 \not\leq M$, maybe $P_n I(\gamma^*) < P_n I(\hat{\gamma})$.
- Exploit linearity of $\|\gamma\|_2 \mapsto |x^T\gamma| 1\{yx^T\gamma < 0\}$, compare $\hat{\gamma}$ to $\|\hat{\gamma}\|_2 \frac{\gamma^*}{\|\gamma^*\|_2}$. Exploit that $\log(1 + \exp(-|x^T\gamma|))$ is small if $\|\gamma\|_2$ is huge.
- New problem: need to control $\|\hat{\gamma}\|_2$. Three case distinctions:

$$\|\hat{\gamma}\|_2 \ge M/2 \ge \|\hat{\gamma}\|_2 \ge 6 \ge \|\hat{\gamma}\|_2.$$

▶ Lower bound excess risk using Gaussian tail bounds.

- ▶ Problem: possibly $\|\gamma^*\|_2 \not\leq M$, maybe $P_n I(\gamma^*) < P_n I(\hat{\gamma})$.
- Exploit linearity of $\|\gamma\|_2 \mapsto |x^T\gamma| 1\{yx^T\gamma < 0\}$, compare $\hat{\gamma}$ to $\|\hat{\gamma}\|_2 \frac{\gamma^*}{\|\gamma^*\|_2}$. Exploit that $\log(1 + \exp(-|x^T\gamma|))$ is small if $\|\gamma\|_2$ is huge.
- New problem: need to control $\|\hat{\gamma}\|_2$. Three case distinctions:

$$\|\hat{\gamma}\|_2 \ge M/2 \ge \|\hat{\gamma}\|_2 \ge 6 \ge \|\hat{\gamma}\|_2.$$

- ▶ Lower bound excess risk using Gaussian tail bounds.
- ▶ Upper bound similar as before (angles easier).

Final slide

Logistic regression has problems if:

⁷Hauck Jr and Donner [1977]

⁸Nemes et al. [2009]

⁹Zhao, Sur, and Candes [2022]

Final slide

Logistic regression has problems if:

New:

▶ Fast classification if $\|\hat{\gamma}\|_2 \gtrsim \frac{n}{p \log n}$,

⁷Hauck Jr and Donner [1977]

⁸Nemes et al. [2009]

⁹Zhao, Sur, and Candes [2022]

Merci pour votre attention!

References I

- Maria-Florina Balcan and Phil Long. Active and passive learning of linear separators under log-concave distributions. In *Conference on Learning Theory*, pages 288–316. PMLR, 2013.
- Walter W Hauck Jr and Allan Donner. Wald's test as applied to hypotheses in logit analysis. *Journal of the american statistical association*, 72(360a):851–853, 1977.
- Felix Kuchelmeister and Sara van de Geer. Finite sample rates for logistic regression with small noise or few samples. *arXiv* preprint arXiv:2305.15991, 2023.
- Szilard Nemes, Junmei Miao Jonasson, Anna Genell, and Gunnar Steineck. Bias in odds ratios by logistic regression modelling and sample size. *BMC medical research methodology*, 9:1–5, 2009.
- Aad W van der Vaart. *Asymptotic statistics*, volume 3. Cambridge university press, 2000.

References II

Maarten van Smeden, Joris AH de Groot, Karel GM Moons, Gary S Collins, Douglas G Altman, Marinus JC Eijkemans, and Johannes B Reitsma. No rationale for 1 variable per 10 events criterion for binary logistic regression analysis. *BMC medical research methodology*, 16:1–12, 2016.

Qian Zhao, Pragya Sur, and Emmanuel J Candes. The asymptotic distribution of the mle in high-dimensional logistic models: Arbitrary covariance. *Bernoulli*, 28(3):1835–1861, 2022.