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Motivation
@00

Introduction to the tomography: Physical background

® reconstruction of the internal structure of an object of interest
® computerized tomography: fixed positioned thin X-rays to get

a cross-section
~ interpret straight line as the two-dimensional Radon

transform
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Introduction to the tomography: Physical background

® reconstruction of the internal structure of an object of interest

® positron emission tomograp
position on specific lines

hy: reconstruction of the unknown
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Motivation
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Introduction to the tomography: Statistical framework

® computerized tomography: Y = R(X) +¢

® positron emission tomography: X ~ c - R[f]

Radon transform of f: R[f]
[BHP14]
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Radon transform
e0

Radon transform R[f] of f: RY — R, f € L (R9)

RIF|(s, ) = / F(v) dv,

{VERdz(v,s):u}

where u € R, s € $971, §971 .= {v € RY : |v|q = 1} is the unit
sphere in RY and the integration is over the hyperplane
{veR?:(v,s) =u}inR?
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Radon transform
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Radon transform of the multivariate normal distribution

F(x) = (270%) =9/ exp (—|x = ul} /(20%)), x, 1 € RY,
€ (0,00)

= R[f]( u) = (2m0?) "2 exp (—|u — (u, s) [*/(20%)),
€81 xR

o=

An approximation of the bivariate standard normal distribution (left) and
its sinogram (right).
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The density estimation in an idealized tomography problem
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Model introduction

(S1,U1),...,(Sn, Up) i.i.d. observations from a probability density
Py R[f](s,u) on Z =391 x R, where py = 279/2/T (d/2)

= kernel density estimator of f(x) at a fixed point x € RY:

ZK (Si,x) = U;),

where m > 0 and, for u € R,

K() = Fi* (L mmy(2m)pal - 197 /2] ()

= pd(27r)_d/ r?=1 cos(ur) dr.
0

[Cav00]
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The density estimation in an idealized tomography problem
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Local measure of accuracy: pointwise quadratic risk

Assumption: || Fy [f]H]Ll(]Rd) < 00
= point evaluation
F(x) = (2m) /R exp(—i (w )) Fal] () AN (w)

is well-defined for all x € RY (using the inversion formula of
the Fourier transform)
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The density estimation in an idealized tomography problem
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Mean squared error: upper bound

Tbevrer (Upper bound over W9 (L)):

Let x € R, s > d/2 and L > 0. Then for spectral cut-off
parameters m,, := n'/(25+d=1) it holds

~ 2 s—
sup [y [)f(x) ~ fmn(x>\ ] < C(Ls,d)n 71,
fews(L)

W (L) = {f € L2 (RY) : fro (1+[t2)° [F4 [F] (D)2 dA9(t) < L}, s,L>0
In [Cav00], different regularity spaces have been considered (exponential decay of

Fourier transform).
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The density estimation in an idealized tomography problem
[e]e]e] lelelelele)

Mean squared error: lower bound

Terern (Minimax lower bound over W* (L))

Let x5 € IRd,L,s > (0. Then, there exist constants
Ls g, C(L,s,d) >0, such that for all L > Lg 4 it holds that

~ 2 .
inf  sup Ef Uf(xo) — f(xo)‘ ] > C(L,s, d)n_zszTil’
f(x0) FEWS(L)

where ?(xo) is an estimator based on an i.i.d. sample
(S1,U1),...,(Sn, Un).

W (L) = {f € L2 (RY) : fro (1+[t2)° [F4 [F] (D)2 dA9(t) < L}, s,L>0
In the paper, different regularity spaces have been considered (exponential decay of

Fourier transform) and an alternative proof structure (here: oriented. on {Tsy08]).

Janine Steck Institute of Mathematics, HU Berlin; supported by IRTG 2544




The density estimation in an idealized tomography problem
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Data-driven choice: Goldenshluger—Lepski method, pointwise version

Tbeoreon

Let M, := {m eEN:m< nl/(Qd_l)}. Let f € I? (Rd),
Fa[f] € L' (R). Then for xo > 48 it holds that

IEf U?m(xo) (x0) — f(Xo)ﬂ

i C
= Clmlel}\f;ln<”1Bf"(0)fd [fH|]2Ll(]Rd) + V(m)) + ?2,

where xy € R?, V(m) := x0Cqy (1 + || Fa [f]H]Ll(]Rd)) m?d=1log(n)n~!.

C1 > 0 depending on d and Cz > 0 depending on d and ||Fg [f]{|f (ra
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The density estimation in an idealized tomography problem
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Data-driven choice: Goldenshluger—Lepski method, pointwise version

Doy (Sketch of the proof)

Based on the Goldenshluger—Lepski proof for the Fourier
estimation.
2 main steps:

e elementary steps to find a controllable upper bound for the

risk
e Bernstein inequality
Let Ty, ..., Ty bei.id. random variables, and we define S,(T) := >_7_; (T; — E[T;]). Then, for any

2
n > 0, we get P (|S,(T) — E[Sp(T)]| > nn) < 2max (exp (‘1‘%) , exp (—%)) where

Var(T1) < v2 and | T1] < b, for some positive constants v and b.

O

[Com17]
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The density estimation in an idealized tomography problem
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Data-driven choice: Goldenshluger—Lepski method, pointwise version

Coretliny

Let L >0, s > d/2. Then for any xo > 48

2s—d

E “? (x0) — £ ( )H<C(L d )( " >_25+;_1
sup m(xo) \X0) — X > ,5,d, X .
fews(L) ' bo) ¥ ’ ’ log(n)

e Optimal rate up to a (log(n))-term.

WS (L) =4 f € L2 (RY) : [ (L+ [t2)° |Fq ] (0)]> dNd(@) < 5} s, >0
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The density estimation in an idealized tomography problem
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Lower bound for data-driven estimators

Tieorern

Let x € RY, s > d/2. Then, there exists Ls 4 > 0 such that for all
L > Lg 4 holds:

If a sequence of estimators {f,(x)}new of f(x) based on the data
(S1,U1),...,(Sn, Up) satisfies

~ 2 s
sup sup Egp [ fa(x) — f(x)‘ ] n252+7di1 <,

nelN fews(L)

then for any s’ € (d/2,s) there exists ¢ > 0 such that

Falx) - f<x>12] (1g<>> >

W (L) = {f €12 (RY) : fro (1+[t2)° [Fa[F] (D)2 dA9(¢) < L}, s,L>0
c=¢(¢,s,s,d) >0
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