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Variable selection in high dimensional linear models

Consider:
y=XB"+¢€ withe ~ N(0,,0%) /

X € R"*P with p possibly larger than n,
wlog,seto =1 ~

Objective: finding
S:={i st. B # 0} withsize |S| =s

unknown Q
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Variable selection with /, penalty

For some positive function k (e.g. k = In(n) in BIC)

§ := argmin ”y—XMBMH%+ K|M|
subsets M

Direct link to Bayesian spike-and-slab regression, set prior on subsets and coefficients:
(M, B) = (M) (B | M); (M) = N°_, Bern(m;; (e<"(M/2 1 1)~Y) and m; = I(B; # 0)

-~

prior inclusion prob.
S matches the mode of the posterior p(M|y) (under regularity conditions).

£y penalties:
m have superior selection properties,

m are much more computationally tractable with recent progress in discrete
optimization and MCMC methods|1, 6, 7].

3/12



Transfer learning for variable selection

Let $(Ds) be the subset selected in the source dataset Ds. Form two blocks:
m B = {ic8Ds)}
] Bz = {Igg(ps)}

Examples:

m In genomics, public databases register found gene-disease associations.
m In causal inference, sets of confounders may have been learnt in related problem.

If selection in the source is informative for
selection in the target: \
\ .,

B = (Bis- Bl Blaajr1r- - -+ Blay|4182])

Block 1 less sparse Block 2 more sparse 7

<
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Transfer informed variable selection

Idea: Selection in the source dataset gives us prior knowledge on the likelihood of a
variable to be truly associated to the outcome in the target dataset.

Since ¢, penalties < prior inclusion probabilities, it’s natural to let the penalty vary by
block. We consider transfer informed penalties:

A . . i
S = argmin ||y—XMﬁM”%+Zj:1 Kj|Mj]
subsets M

where M; = M N B;.

Many examples of improved inference in applications. But theory?
m How much can we earn in theory and in practice?
m Can we lose?
m How to set penalties?
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Milder conditions for variable selection consistency

Variable selection consistency with 5

If and only if:

1) vk = +/In(p S)
\f S \% np(X min \/

thenP(§=S) — lasn,p — 400

Variable selection consistency with &'

If and only if:

(A3) \/I? 2 \/In(pj—sj) Vj

(A4) \/7 S \/np mlnd Sj) vj

then P(§' =S) — 1asn,p — +o0

§'is variable selection consistent in wider class of regimes (n, p, s, 3*) than S.
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Smallest recoverable signals

Forx = In(p — s) and k; = In(p; — s;) Vj, the smallest signal recoverable is:

Standard - §
Ratio of recoverable signal informed/standard
B — O(\/Zln(pfs) n \/zln(s))
min n n
o0
Transfer informed - &/ N
in each block B;, 075 N
« . 2 In(p/ sj) 21In(s;) 2 0.50 N
min,j - + g AN
0.25 RN
Scenario 1 2 3 Tl
p—s 3n e/ n T
100 1,000 10,000 100,000 1,000,00(

p1—s1 +n n* nj2 h



Convergence rate for oracle penalties (min. bound)

standard oracle penalty -5 Ratio of prob. error informed /standard
In(p/s—1)

Informed oracle penalty - s 0.015

OR ~ |n(Pj/5/ 1) +

N

Ratio of oracle convergence rates :

Or.Conv.Rate'
Or.Conv.Rate

92b Zj pi—S; —[”P(Z)(ﬁ;.n, —Bioin’)] 0000 o

1 p—s 1,000 10,000 100,00C

np mln,j 0.010

0.005

Ratio of oracle convergence rates

Example — 1 -- 2

In the orthogonal case, we can show improvements in minimax rates.
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In practice? Informed empirical Bayes

Idea 1: In less sparse blocks, we can safely lower the penalties. We estimate the sparsity
in each block, thus adapting to how informative the transfer is.

Idea 2: Using the connection between ¢, penalties and prior inclusion probabilities and
empirical Bayes, an estimator of sparsity in each block s; for any set of k;:

2 b
e_”y_XMﬁM”%_Zj:I Kj|Mj]

§ 1= Z Z pmp(M) where pmp(M) =

ly—=x, B 112=S™0 x|
i€B; subsets M:ieM DL€ Iy =XP 2= wll
Two-stage algorithm:
Compute §;/p; withk; = k° = In(p) + 3 In(n) forj =1,...,b.
Select the subset:

b
§EB,I ‘= arg mﬂ;n ||y7XMBM”% + Z KJEB|M]‘| where \V/j KJEB = |n(pj/§/ — 1) + % In(n)
j=1
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Properties of the two-stage algorithm

Standard empirical Bayes - 58 Informed empirical Bayes - 555/
o P(SBBCS)—1 o P(SfB' C S) — 1 (slightly slower rate)
e Assume condition on signals: e Assume milder condition on signals:
V(KB 2 \/In(p/st — 1) + 2 in(n) 0By 2 \/In(py/st — 1) + 3in(n)
++/In(s), +/In(s;) V),
then, P(S8=5) =1 asn,p— oo. then, P(S§F8/=5) =1 asn,p— oco.

Ratio of convergence rates

. * 2 * 2
= If signals are weak Conv.Rate' /Conv.Rate ~ 37, %e_"p(x)(ﬁmimf ~Prin’)

m If signals are strong Conv.Rate! /Conv.Rate > 1
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Simulations
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Takeaways

We introduce and study a class of £y penalties for transfer learning in variable
selection, grounded in Bayesian reasoning.

We show one can push fundamental limits on selection consistency with transfer
learning.

We quantify how much can be earned in theory with transfer learning with oracle
penalties.

We propose a concrete data-based approach to set penalties that realize most of the
benefits of the oracle:
m softer conditions for consistency,
m faster convergence in hard and moderately easy settings,
®m minor loss in rate in very easy settings.
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External data - meta data on variables

More generally, we may have external data on variables that partition the set of variables
inb > 2 blocks:

Example - nature of variables

Type of variable Clinical Copy-numbervariation miRNA Mutation mRNA

Average number 9 57,927 784 15,682 22,980

Table: Average number of variables by block type in 15 multi-omics datasets
from The Cancer Genome Atlas [5] analyzed in [2]

Typically, a block of genomic markers is much sparser than a block of clinical signals.
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Convergence rates at the oracle

Assume the penalties are set at their oracle values x°% and KJ-OR.

With standard ¢, (3), the oracle convergence rate is:

OR — 24 c =3 | S22 By’ —max{In(p—s),In(s)}]

With block informed ¢, ('), the oracle convergence rate is:

OR = 22b C/ e % 24 ,B,*nmj —max{In(p;—s;), In(s/)}]

Mo—

j=1
Ratio of bounds on convergence rates at the oracle penalties:

%’g ~ (22b_1 —b) Zj.’:l e 2 [np(z (Brin. ;> —Brin” ] o— 3 [max{in(p—s),In(s)} —max{In(pj—s),In(s)}]
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Necessary conditions in correlated settings

a) Ifforsomej=1,...,b,limp m <1, where?l depends on the correl-
12

ation of Xg, 5, then P(8' € S) 4 1asn, p — oc.

b) If forsomej € {1,...,b}, limp \/»,Bmmd V/2Kj < 00, where A o=
Amax(%XSTh), then P(§' O S) A lasn,p — oco.

) Ifforsomej € {1,...,b}, limpsoo VNABL, = A pj —sj) < oo, then
P(8'=5S) A lasn,p —
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Bayesian interpretation of /;, penalties

Let subset M be a p-dimensional vector of variable inclusion indicators m; = I(B; # 0).
Consider a spike-and-slab prior, the joint prior on parameters and subsets is:

p(B.M|0) =p(B|MpM|8)
Posterior subset probabilities are:
p(M | y,6) o ply | M)p(M | 8) where p(y | M) ~ p(y | B )n—1/2 (i)

and:
Inp(M | y) ~ Iy = XuByl3 — 3 In(n)[M| + Inp(M | 6) + cst

Assume independent inclusion variable, and different prior inclusion probabilities by
block:
p(M | 8) = T17_, Bern (m;; 6;) (M € M) andVi € B;, §; = 681
Then Inp(M | 8) defines the block penalties
ki = LIn(n) +In (60" — 1)
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Empirical Bayes inspired informed penalties

The empirical Bayes estimate of the prior inclusion probability 80) maximizes the
marginal likelihood,

B0 = argmaxg p(y | 60)).
It also satisfies the fixed point equation

60 = 15,5 P (Bi#01y.9)

We can approximate the above equation by replacing & in the RHS by an initial guess 6°:

=3 P(Bi#0]y.6%) = Z > PM|y. &)

j i€B; leB subsets M:ieM

Using that pmp( ) can be seen as a posterior model probability,

. Z > pmp(m) ~—Z >, PM|y.6)~0
j J ieB; subsets M:ieM J ieB; subsets M:ieM



Properties of 5/p

For a fixed set of penalties x;, denote:
5 = {/3,-* es;| Vg = o(m)}

St = {Bfesj‘\/@!ﬁﬂ - VK = In(sﬂ+q}

Assumek; 2 In(p; — s;) and |Sj5] = O(p; —sj)foreveryj=1,...,b,then:

st g s;—|S?
5 < lim E(sf) gfiw forallj=1,....b
i mpoee s \py P
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Thresholding in orthogonal setting (X'X = n /)

Selection with most Bayesian procedures [3], LASSO and ¢, penalty operate by
thresholding the MLE.

A generic threshold estimator:

S = {i: |B,~]>T},

with standard fo: T = /%

A generic block informed threshold estimator:

$ = {icg: Bl>7} and ¥=U Y

with block informed £o: T; = /2%
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Selection consistency when X' X = n/

Suppose that T and B, ;. satisfy:

T > +/2In(p—s)/n and B}, —T > \/2In(s)/n

then P(S=S)—1

Suppose that the 7;’s and 7, ’s satisfy:
TJ \/2|n(p —Sl)/l‘l and lelnj Tj 2 2|n(sj)/n
then PS> =5) =1




Necessary conditions when X' X = n/

7j
2In(p;—s;)
n

a) Ifforsomej € {1,...,b}, limy_o < 1,then P(SP CS) 4 1.

b) Assumeforsomej € {1,...,b},Vi€ S; By =By, ands;/pj < c < 1.

If limp o0 P20 < 1 then P(5* D S5) A 1.

In(s

¢) Assumeforsomej e {1,...,b},Vie S B = By, ;ands;/p; < 1.
ﬁ;win,j

\/2|n(,;j—s,)+\/g InE)sj)
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If limp_s o0 <1 then P(8¥=5) A1
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