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Variable selection in high dimensional linear models

Consider:
y = Xβ⋆ + � with � ∼ N (0n,σ2I)

X ∈ Rn×p with p possibly larger than n,
wlog, set σ = 1

Objective: finding
S := {i s.t. β⋆i ̸= 0} with size |S| = s
unknown
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Variable selection with ℓ0 penalty
For some positive function κ (e.g. κ = ln(n) in BIC)

Ŝ := argmin
subsetsM

∥y − XMβ̂M∥2
2 + κ|M|

Direct link to Bayesian spike-and-slab regression, set prior on subsets and coefficients:
π(M,β) = π(M)π(β | M); π(M) = Πp

i=1 Bern(mi; (eκ−ln(n)/2 + 1)−1︸ ︷︷ ︸
prior inclusion prob.

) andmi = I(βi ̸= 0)

Ŝmatches the mode of the posterior p(M|y) (under regularity conditions).

ℓ0 penalties:
have superior selection properties,
are much more computationally tractable with recent progress in discrete
optimization and MCMC methods[1, 6, 7].
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Transfer learning for variable selection
Let Ŝ(DS) be the subset selected in the source dataset DS. Form two blocks:

B1 := {i ∈ Ŝ(DS)}
B2 := {i ̸∈ Ŝ(DS)}

Examples:
In genomics, public databases register found gene-disease associations.
In causal inference, sets of confounders may have been learnt in related problem.

If selection in the source is informative for
selection in the target:

β∗ = ( β∗1, . . . ,β∗|B1|︸ ︷︷ ︸
Block 1 less sparse

,β∗|B1|+1, . . . ,β∗|B1|+|B2|︸ ︷︷ ︸
Block 2 more sparse

)
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Transfer informed variable selection
Idea: Selection in the source dataset gives us prior knowledge on the likelihood of a
variable to be truly associated to the outcome in the target dataset.

Since ℓ0 penalties ↔ prior inclusion probabilities, it’s natural to let the penalty vary by
block. We consider transfer informed penalties:

ŜI := argmin
subsetsM

∥y − XMβ̂M∥2
2 +

∑I
j=1 κj|Mj|

whereMj = M ∩ Bj.

Many examples of improved inference in applications. But theory?
How much can we earn in theory and in practice?
Can we lose?
How to set penalties?
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Milder conditions for variable selection consistency

Variable selection consistency with Ŝ

If and only if:

(A1)
√
κ ≳

√
ln(p− s)

(A2)
√
κ ≲

√
nρ(X)β∗min −

√
ln(s)

then P(Ŝ = S) → 1 as n, p→ +∞

Variable selection consistency with ŜI

If and only if:

(A3) √κj ≳
√
ln(pj − sj) ∀j

(A4) √κj ≲
√
nρ(X)β∗min,j −

√
ln(sj) ∀j

then P(ŜI = S) → 1 as n, p→ +∞

ŜI is variable selection consistent in wider class of regimes (n,p, s,β∗) than Ŝ.
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Smallest recoverable signals
For κ = ln(p− s) and κj = ln(pj − sj) ∀j, the smallest signal recoverable is:

Standard - Ŝ

β∗min = O
(√

2 ln(p−s)
n +

√
2 ln(s)
n

)
Transfer informed - ŜI
in each block Bj,

β∗min,j := O
(√

2 ln(pj−sj)
n +

√
2 ln(sj)
n

)
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Convergence rate for oracle penalties (min. bound)

Standard oracle penalty - Ŝ :

κOR ≈ ln(p/s−1)√
nρ(X)β⋆min

+
√
nρ(X)β⋆min

Informed oracle penalty - ŜI :

∀j κORj ≈ ln(pj/sj−1)√
nρ(X)β⋆min,j

+
√
nρ(X)β⋆min,j

Ratio of oracle convergence rates :
Or.Conv.RateI
Or.Conv.Rate ∼

22b∑b
j=1

pj−sj
p−s e

−[nρ(Σ)(β⋆min, j
2−β⋆min

2)]
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In the orthogonal case, we can show improvements in minimax rates.
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In practice? Informed empirical Bayes
Idea 1: In less sparse blocks, we can safely lower the penalties. We estimate the sparsity
in each block, thus adapting to how informative the transfer is.

Idea 2: Using the connection between ℓ0 penalties and prior inclusion probabilities and
empirical Bayes, an estimator of sparsity in each block sj for any set of κj:

ŝj :=
∑
i∈Bj

∑
subsetsM:i∈M

pmp(M) where pmp(M) =
e−∥y−XMβ̂M∥2

2−
∑b

j=1 κj|Mj|∑
L e

−∥y−XLβ̂L∥2
2−

∑b
j=1 κj|Lj|

Two-stage algorithm:

1 Compute ŝj/pj with κj = κ◦ = ln(p) + 1
2 ln(n) for j = 1, . . . , b.

2 Select the subset:

ŜEB,I := argmin
M

∥y − XMβ̂M∥2
2 +

b∑
j=1

κEBj |Mj| where ∀j κEBj = ln(pj/ŝj − 1) + 1
2 ln(n)
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Properties of the two-stage algorithm
Standard empirical Bayes - ŜEB

• P(ŜEB ⊆ S) → 1

• Assume condition on signals:√
nρ(X)β∗min ≳

√
ln(p/sL − 1) + 1

2 ln(n)
+
√
ln(s),

then, P(ŜEB = S) → 1 as n, p→ ∞.

Informed empirical Bayes - ŜEB,I

• P(ŜEB,I ⊆ S) → 1 (slightly slower rate)

• Assume milder condition on signals:√
nρ(X)β∗min,j ≳

√
ln(pj/sLj − 1) + 1

2 ln(n)

+
√
ln(sj) ∀j,

then, P(ŜEB,I = S) → 1 as n, p→ ∞.

Ratio of convergence rates

If signals are weak Conv.RateI/Conv.Rate ≈
∑b

j=1
pj−sj
p−s e

−nρ(X)(β∗min,j
2−β∗min

2)

If signals are strong Conv.RateI/Conv.Rate ≳ 1
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Simulations
Scenario 1
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Takeaways

1 We introduce and study a class of ℓ0 penalties for transfer learning in variable
selection, grounded in Bayesian reasoning.

2 We show one can push fundamental limits on selection consistency with transfer
learning.

3 We quantify how much can be earned in theory with transfer learning with oracle
penalties.

4 We propose a concrete data-based approach to set penalties that realize most of the
benefits of the oracle:

softer conditions for consistency,
faster convergence in hard and moderately easy settings,
minor loss in rate in very easy settings.
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External data - meta data on variables
More generally, we may have external data on variables that partition the set of variables
in b > 2 blocks:

Example - nature of variables

Type of variable Clinical Copy-number variation miRNA Mutation mRNA

Average number 9 57,927 784 15,682 22,980

Table: Average number of variables by block type in 15 multi-omics datasets
from The Cancer Genome Atlas [5] analyzed in [2]

Typically, a block of genomic markers is much sparser than a block of clinical signals.
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Convergence rates at the oracle
Assume the penalties are set at their oracle values κOR and κORj .

With standard ℓ0 (Ŝ), the oracle convergence rate is:

OR := 24 c e−
1
2
[
nρ(Σ)

24 β⋆min
2−max{ln(p−s),ln(s)}

]
With block informed ℓ0 (ŜI), the oracle convergence rate is:

ORI := 12(22b − 2b) c′
b∑
j=1

e−
1
2
[
nρ(Σ)

24 β⋆min, j
2−max{ln(pj−sj),ln(sj)}

]
Ratio of bounds on convergence rates at the oracle penalties:
ORI
OR ∼ (22b−1 − b)

∑b
j=1 e

− 1
2

[
nρ(Σ)

24 (β⋆min, j
2−β⋆min

2)
]
e−

1
2 [max{ln(p−s),ln(s)}−max{ln(pj−sj),ln(sj)}]
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Necessary conditions in correlated settings
Theorem

a) If for some j = 1, . . . , b, limn→∞
κj

λ2
j ln(pj−sj)

< 1, where λj depends on the correl-

ation of XBj\Sj , then P(ŜI ⊆ S) ̸→ 1 as n, p→ ∞.

b) If for some j ∈ {1, . . . , b}, limn→∞
√
nλ̄β⋆min,j −

√
2κj < ∞, where λ̄ :=

λmax

(
1
nX

⊤
S XS

)
, then P(ŜI ⊇ S) ̸→ 1 as n, p→ ∞.

c) If for some j ∈ {1, . . . , b}, limn→∞
√
nλ̄β⋆min,j − λj

√
ln(pj − sj) < ∞, then

P(ŜI = S) ̸→ 1 as n, p→ ∞
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Bayesian interpretation of ℓ0 penalties
Let subsetM be a p-dimensional vector of variable inclusion indicatorsmi = I(βi ̸= 0).
Consider a spike-and-slab prior, the joint prior on parameters and subsets is:

p(β,M | θ) = p(β | M)p(M | θ)
Posterior subset probabilities are:

p(M | y, θ) ∝ p(y | M)p(M | θ) where p(y | M) ≈ p(y | β̃(M))n−|M|/2 ([4])
and:

ln p(M | y) ≈ −∥y − XMβ̂M∥2
2 − 1

2 ln(n)|M|+ ln p(M | θ) + cst

Assume independent inclusion variable, and different prior inclusion probabilities by
block:

p(M | θ) = ∏p
i=1 Bern (mi; θi) I(M ∈ M) and ∀ i ∈ Bj, θi = θ(j)

Then ln p(M | θ) defines the block penalties

κj = 1
2 ln(n) + ln

(
θ(j)−1 − 1

)
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Empirical Bayes inspired informed penalties
The empirical Bayes estimate of the prior inclusion probability θ(j) maximizes the
marginal likelihood,

θ̂(j) = argmaxθ(j) p(y | θ(j)).
It also satisfies the fixed point equation

θ̂(j) = 1
pj

∑
i∈Bj P

(
βi ̸= 0 | y, θ̂

)
We can approximate the above equation by replacing θ̂ in the RHS by an initial guess θ◦:

θ̂(j) ≈ 1
pj

∑
i∈Bj

P (βi ̸= 0 | y, θ◦) = 1
pj

∑
i∈Bj

∑
subsetsM:i∈M

P (M | y, θ◦)

Using that pmp(M) can be seen as a posterior model probability,
ŝj
pj

=
1
pj

∑
i∈Bj

∑
subsetsM:i∈M

pmp(M) ≈ 1
pj

∑
i∈Bj

∑
subsetsM:i∈M

P (M | y, θ◦) ≈ θ̂(j)
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Properties of ŝ/p
For a fixed set of penalties κj, denote:

SSj :=

{
β⋆i ∈ Sj

∣∣∣√nλ̄|β⋆i | = o
(√κj)

}

SLj :=

{
β⋆i ∈ Sj

∣∣∣√nρ(X)
8

|β⋆i | −
√κj =

√
ln(sj) + cj

}

Assume κj ≳ ln(pj − sj) and |SSj | = O(pj − sj) for every j = 1, . . . , b, then :

|SLj |
pj

≤ lim
n,p→∞

E
(
ŝj
pj

)
≤
sj − |SSj |

pj
for all j = 1, . . . , b
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Thresholding in orthogonal setting (X⊤X = n I)
Selection with most Bayesian procedures [3], LASSO and ℓ0 penalty operate by
thresholding the MLE.

A generic threshold estimator:

Ŝ :=
{
i : |β̂i| > τ

}
,

with standard ℓ0: τ =
√

2κ
n

A generic block informed threshold estimator:

Ŝbj :=
{
i ∈ Bj : |β̂i| > τj

}
and Ŝb =

⋃
j Ŝ

I
j

with block informed ℓ0: τj =
√

2κj
n
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Selection consistency when X⊤X = n I
Theorem
Suppose that τ and β⋆min satisfy:

τ ≥
√

2 ln(p− s)/n and β⋆min − τ ≥
√

2 ln(s)/n

then P(Ŝ = S) → 1

Theorem
Suppose that the τj’s and β⋆min, j’s satisfy:

τj ≥
√

2 ln(pj − sj)/n and β⋆min, j − τj ≥
√

2 ln(sj)/n

then P(Ŝb = S) → 1
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Necessary conditions when X⊤X = n I

Theorem

a) If for some j ∈ {1, . . . , b}, limn→∞
τj√

2 ln(pj−sj)
n

< 1 , then P(Ŝb ⊆ S) ̸→ 1.

b) Assume for some j ∈ {1, . . . , b}, ∀ i ∈ Sj β⋆i = β⋆min,j and sj/pj ≤ c < 1.

If limn→∞
β⋆min,j−τj√
π
2

ln(sj)
n

≤ 1 then P(Ŝb ⊇ S) ̸→ 1.

c) Assume for some j ∈ {1, . . . , b}, ∀ i ∈ Sj β⋆i = β⋆min,j and sj/pj < 1.

If limn→∞
β∗min,j√

2 ln(pj−sj)
n +

√
π
2
ln(sj)
n

< 1 then P(Ŝb = S) ̸→ 1
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