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Distributed Optimization in Machine Learning 

Number of nodes in the network

• Each node has only access to a local parameter and his local loss function


• Nodes collaborate to find a global objective 

local loss of node i
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Distributed Optimization with Adversaries (Byzantines)
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Each honest node has at most  Byzantine neighborsb

Definition:   - robustness
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with r < 1

Distributed Optimization with Adversaries (Byzantines)
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Gossip communication

Xt+1 = (I − ηL)Xt

Using   and  L = Diag(degrees) − Adjacency Xt =
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  Theorem (folklore) 

  Xt − X0 ≤ (1 −
μ2(L)
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Spectral gap
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The Robust Gossip framework
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The Robust Gossip framework
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i = xt

i − η F((xt
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j)j ∈ neighbors(i))Robust gossip update of node i

   Definition: Robust aggregation function
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Instances of robust aggregations

1. Sort ∥z1∥ ≤ … ≤ ∥zn∥

2.a) Remove vectors larger than ∥zn−b∥
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∑
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2.b) Clip vectors larger at ∥zn−2b∥

F(z1, …, zn) =
n

∑
i=1

zi

∥zi∥
min (∥zi∥,∥zn−2b∥)

ρ = 4

ρ = 2



F-Robust Gossip is r-robust

Theorem 
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r = 1 −
μ2(L) − 2ρb

μmax(L) Algebraic connectivity

In fully connected graphs  

       r-robust until a proportion of  aversaries

μ2(L) = |honest |
↪ 1/(2ρ+1)



Theorem 

There are arbitrarily sparse graphs  and initial values  on 
which, if , no algorithm is  r-robust with r <1

{x0
i }

2b ≥ μ2(L)

Tightness of the breakdown point

  is the best we can have !↪ ρ = 1

 At most  adversaries in fully-connected graphs↪ 1/3



Theorem 

There are arbitrarily sparse graphs  and initial values  on 
which, if , no algorithm is  r-robust with r <1

{x0
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2b ≥ μ2(L)

Tightness of the breakdown point

????



Asymptotic consensus
δ = 2ρb/μ2(L) γ = μ2(L)/μmax(L)

Corrollary:    After T iterations of F-RG
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« Breakdown ratio » Spectral gap of the graph



More in the paper

 Convergence for local SGD steps + communication with F-RG


 A new attack that builds on the spectral properties of the graph


 Experiments



Miscellaneous

• Trimming + F-RG corresponds, in fully connected graphs, to Nearest Neighbor Averaging


• Clipping + F-RG with another oracle clipping threshold recovers ClippedGossip    (w. )


• Clipping + F-RG with an oracle clipping threshold achieves 

ρ = 4

ρ = 1
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