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Context and Motivation

Count time series

Record of the number of occurrences of events over time

Nonnegative and integer-valued

Examples: daily records of COVID cases, number of crimes,
transactions in stocks, and RNA-Seq time series

Statistical model: Generalised Linear Autoregressive Moving
Average (GLARMA)

The goal: Propose efficient variable selection approach in sparse
GLARMA models for overdispersed data, i.e. the variance is much
larger than the mean
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Negative Binomial GLARMA Model

Ye|Fi—1 ~ NB(uf, a*), with Fr_1 = o(Ys,s <t — 1),
with

W IOg :ut BO_'_ZBIXtI—‘I_Z’Y*E*—J’

where1<g<ocoand1<t<n

® Xt1,...,Xtp are the covariates at time t

° B* = (5,57, ,ﬁ;)T the vector of regressor coefficients
° ¥ =(7,...,7%)7 such that > kst Vil < o0

. E;:%,with Ef =0forall t <0
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Classical Estimation of the Parameters in
GLARMA Models (Davis, Dunsmuir & Streett, 2005)
Classical approach: estimation of
0% = (85,87, Bps1s - - - ,7(*7)7— with conditional maximum
likelihood

6 = argmax L(d, ),
)

where

L6, ) = z”: (Iog Ma+Y:)—logl(Y:+1) —loglN(a)

t=1

taloga+ YiWe(d, o) — (a+ Ys) log(a + exp(We (8, a))))

® |n the sparse framework, with many components of 3* being
null, this procedure provides poor estimation results
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Our Estimation Procedure in Sparse GLARMA Models

Estimation of 4*:

5 = argmax L(BOT 4T, a®),
Y

for a given initial value B(©) = (B(O), - ,(JO))T and a(®

To obtain 4, use Newton-Raphson algorithm with initial value

YO = (3§, AT for r>1

9?L _10L
() — A=) __Z = (gOT ,(r=1) ONtZ=(g(O)T (r=1) ,(0)
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Variable Selection Step

Variable selection: To obtain a sparse estimator of 8*, we propose
using

BO) = argmin{ — Lo(8) + NIl }.

where A > 0

ZQ is the quadratic approximation of L obtained by second order
Taylor approximation:

~ 1
~[(@) =51y - X813,
where

oL

— A1/2 T ( A~ 1/2 T
y UTBO + AU (2 5
e UAU' is the singular value decomposmon of the positive

semidefinite symmetric matri 8ﬁ8 (,3(0),7, ©))

(64,0 . x =27
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The Choice of \: Stability Selection
(Meinshausen & Biihlmann, 2010)

Identifies a set of “stable” variables that are selected with high
probability

The vector ) is randomly split into several subsamples of size
(p+1)/2

For each subsampling, we apply the LASSO criterion for a
given \ and store the indices i of the non null /3;

For a given threshold, we keep in the final set of selected
variables only the ones appearing a number of times larger
than this threshold

Concerning the choice of A\, we consider the smallest element
of the grid of \ provided by the R glmnet package

Need to find a threshold
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Practical Implementation

. Initialisation. As the estimator of 8*, take B(®), which is
obtained by fitting a GLM to the observations Yi,..., Y,. For
a9, we take the ML estimate of a* of the same GLM model.
As for 49, take a vector of zeros

. Newton- Raphson algorithm for estimation of 4*. As initial
points, take 8(9), a(®) and 4(%). Stop at the iteration R, such
that ||y(R) — ~ (R- 1 )|oo < 1076

. Variable selection. Use the LASSO criterion and for that
replace (9, a(9) and 4 in the formula of Y by B(®, a(% and
'y(R); Then, use one of the stability selection approaches to
get B

. Reestimation. We fit a GLM to the observations Yi,..., Y,
and the design matrix X, in which we leave only the columns

corresponding to the indices i that we got in the previous step.

We obtain B and & as the final estimates
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Support Recovery of 8*
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Figure: Error bars of the difference between the TPR and FPR when
n=1000, g =2, p =100, o* = 2, and a 5% sparsity level (10
simulations)
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Impact of the Value of n and g on the Recovery of B*
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Figure: Error bars of the difference between the TPR and FPR for

different values of n and g, p = 100, o* = 2, and a 5% sparsity level (10

simulations)
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Impact of the Value of n on the Estimation of 4*
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Figure: Boxplots for the estimations of 4v* for g =2, p = 100, o* = 2,
and a 5% sparsity level (10 simulations)
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Impact of the Value of n on the Estimation of a*
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Figure: Boxplots for the estimations of o* for p = 100, o* =2, a 5%
sparsity level, and g = 1 (left), g = 2 (right) (10 simulations)
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Study of the Kinetics of Transcriptomic data

In RNA-seq time series gene expression levels are measured at
different time points

Can be used to understand the temporal dependence existing
in the gene expression
Eukaryotic genomes of some plants are transcribed outside of
protein-coding genes, named non-coding RNAs
— Coding RNAs code for proteins
— Among them, long non-coding RNAs (IncRNAs) are a
heterogeneous group of RNA molecules, transcribed from
non-coding genes, that regulate genome expression
Goal: Identify the IncRNAs, the expression of which affects the
expression of coding genes, by using the temporal evolution of
the expression of both coding genes and IncRNAs

Model plant: Arabidopsis thaliana
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Means and the variances of RNA-Seq time series
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Figure: Scatter plot of the means and the variances of 145 RNA-Seq time
series
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Figure: Estimation of 8* for explaining the values of 10 coding genes
(Y:) by some of the IncRNAs (x;;), where n =15 and p = 95. A sample
of 10 coding genes is illustrated. 37 out of 95 IncRNAs were selected,
whereas the Poisson model selected 93 out of 95
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Thank you for your attention!
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