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Context and Motivation

Count time series
• Record of the number of occurrences of events over time
• Nonnegative and integer-valued
• Examples: daily records of COVID cases, number of crimes,

transactions in stocks, and RNA-Seq time series

• Statistical model: Generalised Linear Autoregressive Moving
Average (GLARMA)

The goal: Propose efficient variable selection approach in sparse
GLARMA models for overdispersed data, i.e. the variance is much
larger than the mean
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Negative Binomial GLARMA Model

Yt |Ft−1 ∼ NB (µ⋆
t , α

⋆) , with Ft−1 = σ(Ys , s ≤ t − 1),

with

W ⋆
t := log(µ⋆

t ) = β⋆
0 +

p∑
i=1

β⋆
i xt,i +

q∑
j=1

γ⋆j E
⋆
t−j ,

where 1 ≤ q ≤ ∞ and 1 ≤ t ≤ n

• xt,1, . . . , xt,p are the covariates at time t

• β⋆ = (β⋆
0 , β

⋆
1 , . . . , β

⋆
p)

T the vector of regressor coefficients
• γγγ⋆ = (γ⋆1 , . . . , γ

⋆
q)

T such that
∑

k≥1 |γ⋆k | < ∞
• E ⋆

t = Yt−µ⋆
t

µ⋆
t +µ⋆

t
2/α⋆ , with E ⋆

t = 0 for all t ≤ 0
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Classical Estimation of the Parameters in
GLARMA Models (Davis, Dunsmuir & Streett, 2005)

Classical approach: estimation of
δ⋆δ⋆δ⋆ = (β⋆

0 , β
⋆
1 , . . . , β

⋆
p , γ

⋆
1 , . . . , γ

⋆
q)

T with conditional maximum
likelihood

δ̂̂δ̂δ = argmax
δδδ

L(δδδ, α),

where

L(δδδ, α) =
n∑

t=1

(
log Γ(α+ Yt)− log Γ(Yt + 1)− log Γ(α)

+α logα+ YtWt(δδδ, α)− (α+ Yt) log(α+ exp(Wt(δδδ, α)))
)

• In the sparse framework, with many components of β⋆ being
null, this procedure provides poor estimation results
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Our Estimation Procedure in Sparse GLARMA Models

Estimation of γ⋆γ⋆γ⋆:

γ̂̂γ̂γ = argmax
γγγ

L(βββ(0)T , γγγT , α(0)),

for a given initial value βββ(0) = (β
(0)
0 , . . . , β

(0)
p )T and α(0)

To obtain γ̂̂γ̂γ, use Newton-Raphson algorithm with initial value
γγγ(0) = (γ

(0)
0 , . . . , γ

(0)
q )T for r ≥ 1

γγγ(r) = γγγ(r−1)− ∂2L

∂γγγT∂γγγ

(
βββ(0)T , γγγ(r−1), α(0))−1 ∂L

∂γγγ

(
βββ(0)T , γγγ(r−1), α(0))
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Variable Selection Step
Variable selection: To obtain a sparse estimator of β⋆β⋆β⋆, we propose
using

β̂(λ) = argmin
β

{
− L̃Q(β) + λ∥β∥1

}
,

where λ > 0

L̃Q is the quadratic approximation of L obtained by second order
Taylor approximation:

−L̃(Q) =
1
2
∥Y − Xβββ∥2

2,

where

Y = Λ1/2UTβββ(0) + Λ−1/2UT
(∂L
∂βββ

(βββ(0), γ̂γγ, α(0))
)T

, X = Λ1/2UT

• UΛU ′ is the singular value decomposition of the positive
semidefinite symmetric matrix − ∂2L

∂β∂β′ (β
(0), γ̂γγ, α(0))
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The Choice of λ: Stability Selection
(Meinshausen & Bühlmann, 2010)

• Identifies a set of “stable” variables that are selected with high
probability

• The vector Y is randomly split into several subsamples of size
(p + 1)/2

• For each subsampling, we apply the LASSO criterion for a
given λ and store the indices i of the non null β̂i

• For a given threshold, we keep in the final set of selected
variables only the ones appearing a number of times larger
than this threshold

• Concerning the choice of λ, we consider the smallest element
of the grid of λ provided by the R glmnet package

• Need to find a threshold
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Practical Implementation
1. Initialisation. As the estimator of βββ⋆, take β(0)β(0)β(0), which is

obtained by fitting a GLM to the observations Y1, . . . ,Yn. For
α(0), we take the ML estimate of α⋆ of the same GLM model.
As for γγγ(0), take a vector of zeros

2. Newton-Raphson algorithm for estimation of γ⋆γ⋆γ⋆. As initial
points, take βββ(0), α(0) and γγγ(0). Stop at the iteration R , such
that ∥γ(R) − γ(R−1)∥∞ < 10−6

3. Variable selection. Use the LASSO criterion and for that
replace βββ(0), α(0) and γ̂γγ in the formula of Y by βββ(0), α(0) and
γγγ(R). Then, use one of the stability selection approaches to
get β̂ββ

4. Reestimation. We fit a GLM to the observations Y1, . . . ,Yn

and the design matrix X , in which we leave only the columns
corresponding to the indices i that we got in the previous step.
We obtain β̂̂β̂β and α̂ as the final estimates
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Support Recovery of βββ⋆
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Figure: Error bars of the difference between the TPR and FPR when
n = 1000, q = 2, p = 100, α⋆ = 2, and a 5% sparsity level (10
simulations)
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Impact of the Value of n and q on the Recovery of β⋆β⋆β⋆

0.5

0.6

0.7

0.8

0.9

15
0

25
0

50
0

10
00

n

T
P

R
−F

P
R

Method lasso_cv ss_cv q 1 2

Figure: Error bars of the difference between the TPR and FPR for
different values of n and q, p = 100, α⋆ = 2, and a 5% sparsity level (10
simulations)
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Impact of the Value of n on the Estimation of γγγ⋆
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Figure: Boxplots for the estimations of γ⋆ for q = 2, p = 100, α⋆ = 2,
and a 5% sparsity level (10 simulations)
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Impact of the Value of n on the Estimation of α⋆
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Figure: Boxplots for the estimations of α⋆ for p = 100, α⋆ = 2, a 5%
sparsity level, and q = 1 (left), q = 2 (right) (10 simulations)
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Study of the Kinetics of Transcriptomic data

• In RNA-seq time series gene expression levels are measured at
different time points

• Can be used to understand the temporal dependence existing
in the gene expression

• Eukaryotic genomes of some plants are transcribed outside of
protein-coding genes, named non-coding RNAs

– Coding RNAs code for proteins
– Among them, long non-coding RNAs (lncRNAs) are a

heterogeneous group of RNA molecules, transcribed from
non-coding genes, that regulate genome expression

• Goal: Identify the lncRNAs, the expression of which affects the
expression of coding genes, by using the temporal evolution of
the expression of both coding genes and lncRNAs

• Model plant: Arabidopsis thaliana
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Means and the variances of RNA-Seq time series
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Figure: Scatter plot of the means and the variances of 145 RNA-Seq time
series
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Results
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Figure: Estimation of β⋆β⋆β⋆ for explaining the values of 10 coding genes
(Yt) by some of the lncRNAs (xt,i ), where n = 15 and p = 95. A sample
of 10 coding genes is illustrated. 37 out of 95 lncRNAs were selected,
whereas the Poisson model selected 93 out of 95

14 / 15



Context and Motivation Statistical Model Simulations Application Conclusion

Thank you for your attention!

• Paper
Gomtsyan, M. (2024). Variable selection in a specific
regression time series of counts. arXiv:2307.00929

• R package
M. Gomtsyan NBtsVarSel: Variable Selection in a Specific
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