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Interplay between data, physics and simulation models.

Link to industrial use-cases.
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Motivation. Once calibrated on large sets, deep neural network models, have proven their

e�iciency and speed of execution. Subject to a good understanding of a physical phenomenon,

simulation models can, in some cases, do without observational data, but their computational

cost can be prohibitive. Motivated by industrial use cases, this talk presents some recent works on

machine learning based on physics informed techniques, enabling e�icient models to be obtained

in cases where the volume of observational data available is low.
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Intro The success of ML models

Data Sources & several Successes of "ML/AI" models

AI Foundations models

I Imagenet is a huge open source database :

14.10
6

labeled images for 10
3 categories,

... "quite expensive" labeling e�ort....

today pretrained models and DB are open source and

may be used fo image classification, object detection...

AlexNet [Krizhevsky et al., 2012], ResNet [Huang et al., 2017]...

I GraphCast. This state-of-the-art model

delivers 10-day weather predictions at un-

precedented accuracy in under one minute

based on 39 years (1979–2017) of historical

data from ECMWF’s ERA5 (21) reanalysis

archive.

I DeepL. relied on the huge French-English

Linguee dictionary.

I ChatGPT, LLM. trained on very large cor-

pus of text data.

I Foundation models. open-source and
pretrained models dedicated to various

tasks under various so�ware licences...

Top-performing deep architectures are trained on massive amounts of labeled data.
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Intro The success of ML models

Learning a model from an algorithmic point of view...

# The Train Data and your New, Target data
(XTrain,yTrain)= load(MyTrainDataBase) ;

(XNew,yNew)= load(MyNewData) ;

# The NN model
from sklearn.neural_network import MLPClassi-

fier

clf = MLPClassifier(solver=’lbfgs’, alpha=0.0001,

hidden_layer_sizes=(5, 2), random_state=1)

clf.fit(XTrain, yTrain)

# The Decision Tree model
from sklearn.tree impot DecisionTreeClassifier

treemod = DecisionTreeClassifier(

min_samples_split=10,min_samples_leaf=5,min_impurity_decrease=0)

# Decision on new data
(XNew,yNew)=load(MyNewData)

pyNew=clf.predict_proba(Xnew)

treefit= treemod.fit (XTrain,YTrain)

# Error Evaluation
pyNew=treefit.predict_proba(Xnew)>0.5

1. Input/ output (X , Y)
(Features, labels set) defined by the operational

need.

2. Data set. S = {(xi, yi)}m
i=1
∼ Dm

a

learning/training sample of m iid pairs.

withD an unknown joint probability distribution

on the product space X ⊗ Y

3. Model H = {hθ|hθ : X → Y} a hypothesis

class, θ parameters, classifiers or regressors

depending on the nature of Y .

4. Loss function `(y, hθ(x)) providing a cost of

hθ(x) deviating form the true output y ∈ Y .

The best hypothesis is the one that minimizes the

true risk, consequently, generalizes well :

RD
`(hθ) = E

(x,y)∼D
[`(hθ(x), y)]

"Learning" consists of finding a good hypothesis

function hθ ∈ H that captures in the best

possible way the relationship between X and Y .

hθ
opt

= arg min
hθ

RD
`(hθ)

5. Optimization Procedure, hyperparameters...

2 septembre 2025 3 / 46



Intro ML in industry

Industrial

motivations
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Intro ML in industry

Conception : product design.

I New products are regularly manufactured with a long and costly development.

I Relative small data sets are gathered during the development of products such as

characteristics (X : color, shape, weight...) and performances (Y ).

• Is-it possible to predict the performances (Y ) of a new tire line given data previously

gathered from other lines ? [de Mathelin, 2024]
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Intro ML in industry

"Usage" : ML for Automatic tire wear detection

Industrial objectives : Design an application to

1. Detect and localize a "new generation" wear indicator

in a tire image (X).

2. Estimate the wear level (Y)

Data base :
Gathering a supervised data base (X,Y) in costly, taking

tire pictures (X) in various conditions (views, lighting ,-with

and without- wear indicator...) then

evaluating "by hand" the wear quality (Y)

(raw information 0-100% , 4 grouped levels) ;

• 1000 labeled Tires images were collected :

500 used for learning (shared with the competitors)

• 500 images for blind evaluation.

An AI Challenge was organized in 2019 for Startups by the Paris region and

ENS Paris-Saclay in collaboration with Michelin company.
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Intro ML in industry

Production : decision making process.

I The final quality of the product strongly depends on raw materials (composition/proportion)

and fabrication. Fabrication needs to be fully understood, for automatic decision making

Process.

I As an illustration, the Calendering process smoothes out the rubber through contra-rotating

cylinders. Physical problem : Assure that the rubber has the desired properties.

• The rubber is assimilated as an incompressible

non-Newtonian fluid flow.

• Numerical simulations help to understand the

process.
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Intro ML in industry

Machine Learning in the industry

Main observations :

I O�en small, moderate, evolving database. Ex. manufacturing process.

I Few or not labeled data. Ex. Few production defaults.

I labeled-data is o�en di�icult and time-consuming to acquire.

Ex. Experimental design to help selecting costly observation outputs.

I In many real-world applications, historical (training) data and newly collected (test) data

may o�en exhibit di�erent statistical characteristics.

However, in many ML scenarios, training and test samples are supposed to be generated by

the same (unknown) probability distribution.

I Still Strong Needs for monitoring and diagnosis based on machine learning (ML) .

I Makes sense to re-use knowledge gained from related but distinct datasets, from physics,

from conception........

2 septembre 2025 8 / 46



Intro Expert Knowledge & ML Modeling

Knowledge in ML modeling

Extra Prior knowledge can provide rich information not existing or hard to extract in limited

training data and helps improve the ability to generalize, and the plausibility of resulting models.

• Data knowledge .

1. Augmentation. Easy for Image classification tasks (symmetry, rotation...).

2. Feature engineering. xraw → x → fθ(x) ∼ y
Ex. Wavelet based sca�ering transform, Fourier transform.

Ex : sounds classification for Delphin challenge classification (frequential data).

3. Foundation models. Pre-trained models on alternative large data base, use of TL.

•Model Tailored knowledge [Features, architecture, function properties]

1. Design of specialized NN architecture associated with a given predictive task. Symmetry

groups as rotation, homothety, translation may implement an intrinsic geometry of fθ
x → fθ(x) ∼ y
Ex : Convolutional NN [CNN] by cra�y respecting invariance along the groups of

symmetries. Pre-calibrated models (NN warm start).

2. Multi-Task Learning
Introduction of knowledge/ constraints in the cost function, in the optimisation process. Ex :

Physical Informed Neural Network

Towards Transfer Learning, Domain adaptation, & Physics Informed Machine Learning..
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Intro Expert Knowledge & ML Modeling

Outline

1. Introduction. Knowledge & Machine Learning (ML).

The success of ML models

ML in industry

Expert Knowledge & ML Modeling

2. Transfer Learning

3. Physics Informed Machine Learning (PIML)

Physics Informed Neural Networks (PINNS)

Sampling of "collocation" points

Fixed-Budget Online Adaptive Learning (FBOAL)

Industrial Application. The Michelin Rubber Calendering Process

Geometry-Aware PINNS

4. To conclude
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Transfer Learning

Machine Learning models

.

&

.

Transfer learning
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Transfer Learning

Learning a Machine.

ML models aim to provide models with a good generalization capability on a Target domain.

Learning data, vs Target data/same domains, Target data/di�erent domains.

Target domain (ex I).

Same Domain {X , P(X)} &

task T = {Y, P(Y |X)}.

Figure – High Prediction capability.

Target domain (ex II).

Di�erent Domain & same task.

Figure – Low Prediction capability.

P(x, y) = P(y/x) * P(x)
Joint distribution

di�erences concept shi� covariate-shit
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Transfer Learning

The Transfer learning framework

I Data collections : Source & Target
1. Source data S .

XS ⊗ YS the source input and output spaces associated with S
SX the marginal distribution of XS , tS the source learning task

2. Target data T
XT ⊗ YT the Target input and output spaces associated with T
TX the marginal distribution of XT , tT the Target learning task

∆ Source and Target data are not drawn from the same distribution.

I Focus on the Target Risk. RT `(h) = E[`(h(x), y)]
(x,y)∼T

with ` the loss function.

I Supervised data or calibrated Model available for the source domain (enough data).

Transfer learning aims to improve the learning of the target predictive function :

fT : XT → YT for tT using knowledge gained from S where S 6= T

S 6= T (joint distributions) implies several cases :

• SX 6= TX i.e. XS 6= XT (spaces) or SX (X) 6= TX (X) (laws) or

• tX 6= tT (i.e. YS 6= YT (target task) or S(Y/X) 6= T (Y/X) (conditional law)

... Seems to be a hard problem...

Success stories ?... Theoretical guaranties ? Assumptions?, Negative transfer ? ....

Answers to the industrial partners.... open source algorithms...
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Transfer Learning

Transfer Learning & Domain adaptation Methods

• Several approaches to transfer knowledge from Source to Target domain.
I Model-based. Transfer the model parameters learnt on the source data to the target model.

- Train model available, not necessary the source data- .

Ex. Image based tire wear estimation based on Deep architecture (Michelin) (Resnet...), Automatic fall
detection based on decision trees/ RF (Tarke�).

I Feature-based. Find a new representation space to bring feature spaces closer.

-Source and Target Input data available-. Ex. Domain adversarial neural networks (EDF, Michelin)

I Instance-based. Re-weight the source samples to bring the distributions closer.

-Source and Target Input data available-.

Ex. Multi-source domain adaptations for Product design (Michelin) or Electricity prediction (EDF)

• Theoretical guarantees on the Target Risk given the Source Risk and discrepancy

RT (h) ≤ RS(h, h∗S ) + discH,`(S, T) + λ

where RQ (h) = EQ (`(h(X), Y)),

discH,L(S, T) = suph,h′∈H
∣∣LS(h, h′)− LT (h, h′)

∣∣
, LQ (h, h′) = EQ (`(h(x), h′(x))), h, h′ ∈ H

h∗S = argminh∈H RS(h), h∗T = argminh∈H RT (h), λ = RS(h∗T ) + LT (h∗S , h∗T )
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Transfer Learning

Transfer Learning & Domain adaptation Methods

I Model-based.
I Feature-based.
I Instance-based. Re-weight the source samples to bring the distributions closer.

-Source and Target Input data available-.

Ex. Multi-source domain adaptations for Product design (Michelin) or Electricity prediction (EDF)

Figure – Importance Weighting algorithm for the tire design use-case where source and target data respectively

correspond to the observations recorded before and a�er 2018.

All methods are provided with the source dataset, augmented with the few target labeled data : S ∪ T K

[de Mathelin, 2024].
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Transfer Learning

Machine Learning models

. for physics
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Transfer Learning

Modeling. Observation data and Numerical simulations

I Surrogate Models. Meta Model. Machine Learning models and numerical

simulations. (speed..)

I GraphCast. The state-of-the-art model delivers 10-day weather predictions

at unprecedented accuracy in under one minute based on 39 years (1979–2017)

of historical data from ECMWF’s ERA5 (21) reanalysis archive.
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Transfer Learning

ML surrogate model

Illustration with Deep Neural Network on a toy example.

Burger’s equation :input (x space , t time), output : speed of the fluid

given parameter : ν viscosity. Dirichlet boundary condition :

∂u
∂t + u ∂u

∂x − ν
∂2u
∂x2

= 0 ; u(0, x) = −sin(πx) ; u(t,−1) = u(t, 1) = 0

Neural network Surrogate model.

fθ trained with n = 100/1000 supervised observations.

ML model : NN architecture : 2-4 (x50)-1.

Evaluation on a Test data set, regular grid of points (256 (x) , 100 (t)).

E(u, û) = ||u − û||2
2
/||u||2

2
on a grid (256 (x) , 100 (t))

Supervised points Surrogate model E(u, û) = 0.17

Pairwise Plot Error

Supervised points Surrogate model E(y, ŷ) = 0.02

Pairwise Plot Error
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Transfer Learning

ML Surrogate model

Illustration with Deep Neural Network on a toy example.

Focus on the Pde errors/residuals computed for Burger model (right/bo�om figure) :

R = ∂û(x,t)
∂t + û(x, t) ∂û(x,t)

∂x − ν ∂
2 û(x,t)
∂x2

?= 0 ;

Ndata = 1000, Ncolloc=0 , NN architecture : 2-4 (x50)-1. 50 000 epoch, Adam optimizer.

E(u, û) = ||u − û||2
2
/||u||2

2
on a grid (256 (x) , 100 (t))

PINNs model E(u, û) = 0.0163

→The pde constraints are not respected...

→ The NN model mimics the input/output rela-

tion

but the underlaying physics is not caught.

I Especially, in a "small data regime", the vast

majority of state-of-the-art machine

learning techniques are lacking robustness.

I The cost of data acquisition may be

prohibitive.

Experimental design are proposed to chose

the observations.

I ML fail to "model" the underlaying physics

phenomena (pde constraints not respected).

I We are inevitably faced with the challenge

of drawings conclusions and making

decision under partial information.
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Transfer Learning

Physics Informed Neural Networks

PINNs are neural networks trained to solve supervised learning tasks while respecting any given laws
of physics described by general nonlinear partial di�erential equations. [Raissi et al., 2019].

Key ingredients :
1. A deep neural network model : hθ ∈ H

2. A supervised data set. Dn = {(Xi, yi) i = 1..n, X ∈ X , y ∈ Y}
the training data (initial and boundary observations).

MSEdata = 1

n

∑n
i=1

[hθ(Xi)− yi]2

3. Equations* describing the physics.

Ex : Burger equation : Input : X = (x, t) output : u :

R(u, t, x, ν) =
∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2

= 0

MSEpde = 1

n

∑
Colloc

i=1
R(ui , ti , Xi , ν) , No mesh!

pde residuals cost on random collocation points.

4. A appropriate loss function L(hθ,Dn, physics equations).

Shared parameters θ of the NN model hθ(t, x) and Rpde

θ (t, x) are

"learned" by minimizing : MSE = wdataMSEdata + wpdeMSEpde

Figure – [Cuomo et al., 2022]
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Transfer Learning

Physical Informed Neural Netwotks

Open questions with an important impact for PINNs models, September 2020
I Supervised data. Observations (number, localization, boundary or inside the domain).

I Unsupervised data. Collocation points : number, localization, on a mesh grid, at random ...

I Trade-o� between the two data and residual pde losses : MSE = wdataMSEdata + wpdeMSEpde

I PDE with given parameters (ν) are easily learned by PINNs.

What about parameterized PDE?

I Impact of the geometry of the domain (design) ?

Industrial PINNs Applications
I Surrogate modeling. Data-driven solution of pde. Fluid mechanics [Raissi et al., 2019],... ,

Solid mechanics,...

Application to rubber calendering process (non-Newtonian fluid thermo-mechanical

problems) [Nguyen et al., 2022]

I Identification of unknown parameters. Data discovery of pde. [Raissi et al., 2019],

[Nguyen et al., 2022]

I Inverse problems.

Khoa Nguyen, PhD thesis, September 20
th 2024.

Development and assessment of physics-informed deep learning methods : to-

wards mutliphysics simulation in industrial contexts.
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PIML

Outline

1. Introduction. Knowledge & Machine Learning (ML).

The success of ML models

ML in industry

Expert Knowledge & ML Modeling

2. Transfer Learning

3. Physics Informed Machine Learning (PIML)

Physics Informed Neural Networks (PINNS)

Sampling of "collocation" points

Fixed-Budget Online Adaptive Learning (FBOAL)

Industrial Application. The Michelin Rubber Calendering Process

Geometry-Aware PINNS

4. To conclude
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PIML PINNs

Physics Informed Neural Netwotks

[Raissi et al., 2019]

fθ(t, x) is defined by : fθ := ut +N [u]

• u(t, x) is approximated by a deep NN.

• Automatic di�erentiation helps to minimize

R(t, x) applying the chain rule for

di�erentiating compositions of functions.

Pytorch, TensorFlow

The shared parameters θ between the NN fθ(t, x) and Rpde

θ (t, x) can be learned by minimizing

the mean squared error.

MSE = wdataMSEdata + wpdeMSEpde

• MSEdata = 1

N
data

∑N
data

i=1
[fθ(t i

u, x
i
u)− ui]2

for chosen training data (initial and boundary).

• MSEpde = is the cost of pde residuals on random collocation points. No mesh!

Supervised and Unsupervised Smart Mix
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PIML PINNs

PINNs models

Importance of the Training observations.

Impact on the Pde errors computed for Burger model.

Ndata = 100, Ncolloc=10000 ,

ML model. NN architecture : 2-4 (x50)-1. 50 000 epoch, Adam optimizer.

PINNs model E(u, û) = 0.0157
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PIML PINNs

Motivation : Operationnal Use cases & Pinns

Context: Two use-cases…
  … And common equations

Interest in Machine learning

Subscale physical 
parameterizations
= approx. of Navier-
Stokes equations

1.  ComprehensionValidate a 
fabrication 
decision

2.  Decision 
making

Create new products

3.  Conception

3

Momentum equation
Energy equation
Mass equation

High computational cost
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PIML Sampling colloc.

Sampling methods for collocation points in PINNS

In the PINNS framework, PDE residuals are computed and minimized on a set of collocation

points.

Various sampling strategies have been proposed for these training points, which can be divided

into two main sub-classes :

I the non-adaptive sampling approaches.

I The collocation points are o�en uniformly and randomly distributed,

as in the original work of [Raissi et al., 2019] that employed the Latin Hypercude Sampling (LHS), or

I manually and non-uniformly based on prior knowledge of the physical phenomena, as in the work

of [Mao et al., 2020] and [Nguyen et al., 2022] which is however problem dependent.

I the adaptive sampling approaches.
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PIML Sampling colloc.

Non adaptive Sampling methods

Vanilla PINNS with randomly distributed collocation points o�en fail to predict accurately the

PDE solution in complex problems. If one dispose of prior Physical knowledge (discontinuity,

coupled physics, interest zone, expert guided). Properly chosen locations can increase

significantly the accuracy.

•Manual sampling in PINNs [Mao et al., 2020]. Error : le� : O(10
−2) ; right : O(10

−5)
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PIML Sampling colloc.

Non adaptive Sampling methods

• Prior Mesh knowledge based Information [Nguyen et al., 2022]

The non-adaptive sampling approaches are widely used in PINNS literature : straightforward and

e�icient when dealing with various PDS problems, including PDEs providing that expert physical

knowledge is available.

Illustration : calendar simulation process and pre-defined mesh grid.

→ However, physical knowledge is not always available...
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PIML Sampling colloc.

Adaptive Sampling methods

Several adaptive collocation approaches have been developed.

I Residual-based Adaptive Refinement (RAR) approach, first introduced by [Lu et al., 2021],

adds new training collocation points to the location where the PDE residual errors are large.

Very e�icient in enhancing the accuracy of the prediction in many complexe PDE problems.

→ leads to an uncontrollable amount of collocation points (∞) and computational cost at

the end of the training process.

I Residual-based Adaptive Distribution (RAD) approach, introduced by [Wu et al., 2023].

computes/estimates a probability density function based on PDE residuals, and then

resamples or adds new collocation points according to this pdf.

→ strong benefits compared to vanilla PINNS in both forward and inverse tasks.

Generalizes several previous adaptive approaches [Peng et al., 2022], ...

I Residual-based Adaptive Refinement with Distribution (RAR-D) approach.

A�er a certain number of iterations, m points are added to the set of training collocation

points.

2 septembre 2025 27 / 46



PIML Sampling colloc.

Adaptive Sampling methods

The Probability Density Function (PDF) p(x), which is based on the PDE residuals, is defined as

follows :

p(x) ∝
εk(x)

E[εk(x)]
+ c

where ε(x) denotes the PDE residual for any point x , k ≥ 0 and c ≥ 0 are two hyperparameters.

Introduced by [Wu et al., 2023] :

I Residual-based Adaptive Distribution (RAD) : a�er a certain number of iterations, the

collocation points are randomly resampled according to the PDF previously defined.

I Residual-based Adaptive Refinement with Distribution (RAR-D) : a�er a certain number of

iterations, m points are randomly sampled according to the PDF previously defined. Then

these points are added to the set of training collocation points.

I → only RAD allows the number of training points to be fixed during the training, while in

RAR-D, this number gradually increases and may lead to higher computational costs.

The performance of RAD and RAR-D also depends on the period of resampling method.

k and c hyperparameters of RAD and RAR-D, need to be adjusted.
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PIML FBOAL

Adaptive Sampling methods

Fixed-Budget Online Adaptive Learning (FBOAL) [Nguyen, 2024]

Principle : The domain is decomposed into di�erent sub-domains.

The collocation set is divided equally for each equation.

Notations : Ωj : collocation set for eq. j. Lj
pde : PDE res. of eq. j.

xji : collocation points in Ωj at loc. i. x
′
ji : new collocation points.

I The xji are distributed so as to maximize Lji
pde i.e. Ωj is

updated by adding n new points x
′
ji .

Typically n = ηNj η ≤ 1 that yield larger residuals Lji
pde .

∀i ≤ n Lj
pde(x

′
ji) ≥ min

x∈Ωk
j

Lj
pde(x)

Update rule : Ωk+1

j = {x′ji}i≤n ∪ Ωk
j \ {xji}i≥n+1

I The Nj − n points of Ωk
j with smallest residuals are

discarded

I Updating is applied during the training process every τ
epochs, which introduces two new parameters : η and τ .
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PIML FBOAL

Impact on collocation points/ Precision.

Burgers equation.
ut + uux − νuxx = 0 for x ∈ [−1, 1], t ∈ [0, 1]

u(x, 0) = − sin(πx)

u(−1, t) = u(1, t) = 0

Figure – Burgers equation : Absolute value of PDE residuals for ν = 0.0025 a�er the training process for di�erent
approaches. The curves and shaded regions represent the geometric mean and one standard deviation of five

runs. On the line x = 0 (le�), At instant t = 1 (right).
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PIML FBOAL

Impact on collocation points/ feed-back on the density

Burgers equation. ML Model u( x, t, ν = ν0)
ut + uux − νuxx = 0 for x ∈ [−1, 1], t ∈ [0, 1]

u(x, 0) = − sin(πx)

u(−1, t) = u(1, t) = 0

Figure – Burgers equation : Density of collocation points a�er the training with FBOAL.
ν = 0.0025 (le�) ; ν = 0.0076 (center) ; ν = 0.0116 (right)
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PIML FBOAL

Impact on collocation points/ Training cost benefits

Burgers equation.
ut + uux − νuxx = 0 for x ∈ [−1, 1], t ∈ [0, 1]

u(x, 0) = − sin(πx)

u(−1, t) = u(1, t) = 0

Figure – Burgers equation : Performance of classical PINNs and PINNs with adaptive sampling approaches. The

curves and shaded regions represent the geometric mean and one standard deviation of five runs. In (c) the solid

lines show the cost function during the training, the dashed lines show the errors on the testing mesh, and the

black line shows the threshold to stop the training. Relative L2

error (le�) ; Number of training iterations ; Loss

for ν = 0.0025 (right).

Classical PINNs PINNs + RAR-D PINNs + RAD PINNs + FBOAL

Training time 33.7± 1.5 41.0± 5.8 38.8± 2.3 21.5± 2.7
Number of resampling 0± 0 201± 75 210± 77 48± 2

Table – Burgers equation : Training time (in minutes) and the number of resampling for ν = 0.0025.
The training is e�ectuated on an NVIDIA V100 GPU card.
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PIML FBOAL

Impact on collocation points/ ν Adaptation.

Parametrized Burgers equation. ML model u( x, t, ν)
Training, 40 values of ν ∈ [0.0025, 0.0124].

ut + uux − νuxx = 0 for x ∈ [−1, 1], t ∈ [0, 1]

u(x, 0) = − sin(πx)

u(−1, t) = u(1, t) = 0

Figure – Parametrized Burgers equation : Comparison of classical PINNs and PINNs with adaptive sampling
approaches. The zone in gray is the learning interval for ν (interpolation zone). The curves and shaded regions

represent the geometric mean and one standard deviation of five runs. In (c) the solid lines show the cost

function during the training, the dashed lines show the errors on the testing data set, and the black line shows

the threshold to stop the training. Relative L2

error (le�) ; Number of collocation points ; Cost function during

the training (right).

Classical PINNs PINNs + RAR-D PINNs + RAD PINNs + FBOAL

Training time 13.2± 0.0 1.4± 0.3 9.1± 3.5 7.8± 1.9

Number of resampling 0± 0 34± 8 204± 71 173± 25

Table – Parametrized Burgers equation : Training time (in hours) and the number of resampling of each
methodology. The training is e�ectuated on an NVIDIA A100 GPU card.
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PIML FBOAL

PINNS Sampling methods

Dont’t use PINNs methods without adaptation !

I FBOAL adaptively adds more points to important zones (coupling, discontinuity)

I With appropriate chosen hyperparameters, FBOAL provides be�er accuracy and faster

convergence than vanilla PINNS with random points

I FBOAL can provide prior knowledge of high residuals.

→ Help conventional numerical solver in the construction of mesh.

Limitations and Perspectives

I No theoretical results for convergence

I Optimal hyperparameters of FBOAL are problem-dependant

I The decomposition domain step can be further investigated (e.g. high-dimensional)

I The division of set points for multi-physics problems may not be optimal.
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PIML Calendering

Rubber calendering process

I Calendering process : smooth out the rubber through contra-rotating cylinders

I Physical problem : assure that the rubber has the desired properties
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PIML Calendering

Industrial Physics models.

Rubber calendering modeling

To generate reference High-Fidelity (HF) solutions of velocity, pressure, and temperature fields,

the equations are discretized and solved using an in-house generic and multi-purpose finite

element solver named MEF++ and co-developed by Laval University and Michelin. [?].
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PIML Calendering

Rubber calendering process - inverse problem

Goal : identify the true value of the thermal conductivity from sensors measurements.

Dimensionless equation :

I Using only two lines of sensors, PINNs can

identify accurately the true values of

unknown parameters.

I Adaptive strategies outperform fixe

strategies
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PIML Geometry-Aware PINNS

Geometry Aware Deep Energy Method

I [Nguyen et al., 2024] proposed to encodes the geometric knowledge into the PINNS model

and to minimize a loss function on the potential energy of the system and not on residual

equations.

I The potential energy of the system is minimum at the equilibrium state and computed by

the di�erence between internal and external energy, here approximated by Monte Carlo.

I The potential energy of the systems over all geometries are minimized.

I Focus is made of mechanical problem using weak formulation.
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PIML Geometry-Aware PINNS

Geometry Aware PIML.

Displacement of a Beam with Linear Elasticity.

Experimental design.

I 5 parameters encoding the geometry

I LHS to compute 50 geometries

I The le� side clamped, right side subjected to a traction

~P = (0,−1)N .

I homogeneous, isotropic material with Young’s modulus

E = 1000N/m2

, and Poisson’s ratio ν = 0.3.

I Reference solution obtained by Finite Element Method and

Fenics so�ware

Ex. Training :

Ex. Testing

Coding the Geometry...

I Parametric : explicit parametric encoding.

I PCA-Coord : spatial coordinates for the geometric representation and

PCA for the encoding (objects’ boundaries).

I VAE-Coord : spatial coordinates for the geometric representation and

VAE for the encoding.

I PCA-Image : images for the geometric representation and PCA for the

encoding. ( objects’ images are available.)

I VAE-Image : images for the geometric representation and VAE for the

encoding.
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PIML Geometry-Aware PINNS

Geometry Aware PIML.

Displacement of a Beam with Linear Elasticity.

• Importance of adaptive sampling
Parametric encoding. Illustration.

Without FBOAL (absolute error)

With FBOAL(absolute error)

• Impact of encoding. Testing data set.
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PIML Geometry-Aware PINNS

Geometry Aware PIML

Toy tire loading simulation with Hyperelasticity

I Model the 2D displacement of toy tires composed of

hyperelastic materials (rubber).

I Tires are made of rubber with a Young modulus

E = 21.10
6Pa and a Poisson’s ratio ν = 0.3.

I Tires follow the Saint-Venant Kirchho� hyperelastic model.

Sketch of a tire before and a�er

loading.

About the geometry.

I 55 Tire geometries (5 x 11) given radius of the

inner and outer boundaries, and the grooves.

I Di�erent coding schemes : PCA-coord,

VAE-coord, PCA-image, VAE-image
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PIML Geometry-Aware PINNS

Geometry Aware PIML

Toy tire loading simulation with Hyperelasticity

Performance of tire load simulation.

Best VAE-coord encoding (non linear)

Improvement using adaptive sampling. Illustration

.

Truth Pred Test .

Err w/o FBOAL Err w FBOAL Density by FBOAL
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Conclusion

Outline

1. Introduction. Knowledge & Machine Learning (ML).

The success of ML models

ML in industry

Expert Knowledge & ML Modeling

2. Transfer Learning

3. Physics Informed Machine Learning (PIML)

Physics Informed Neural Networks (PINNS)

Sampling of "collocation" points

Fixed-Budget Online Adaptive Learning (FBOAL)

Industrial Application. The Michelin Rubber Calendering Process

Geometry-Aware PINNS

4. To conclude

2 septembre 2025 42 / 46



Conclusion

A personal message to share...

I Collaborations

between academics and “Z” partners o�en raise original scientific questions (Z =

biologists, industrialists, socio-economists, etc.).

But, Never forget we do not have the same jobs !

I Research time.

Don’t try to solve first the "Z issue", but try to rephrase first a scientific question, and then

bring an answer to this solution in you own field.

Don’t leave your "scientific Island unless you know to find your way back ! ... unless you

want to change your work.

I Valorisation time. Your "field scientific answer" will bring an answer to the Z issue...(maybe

with some adaptation)

I Innovation time.

Your " scientific answer" applied to the Z needs will create a certain amount of added value

(economical value).

Thank you !
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Conclusion

A joint work

thanks to the Industrial Data Analytics and

Machine Learning chair

with

I Antoine de Mathelin, Towards reliable machine learning under domain shi� and costly labeling, with

applications to engineering design Michelin & IDAML, Centre Borelli

I Khoa Nguyen, Development and assessment of physically informed learning methods : enhancement of

multi-physical simulation in industrial contexts, CEA, Michelin & IDAML, Centre Borelli

I Fouad Oubari, Deep Generative design for Industrial Products Michelin & IDAML, Centre Borelli

I Rémy Vallot, Convergence acceleration of a nonlinear solver by statisticalphysically informed learning

Michelin & IDAML, Centre Borelli, UTC

I CEA Team since 2018. C. Millet, G. Kluth, S. Oger, JC. Weill,... .

I Michelin Team since 2018. R. Décatoire, F. Deheeger, T. Dairay, R. Meunier,... .

I Borelli, ENS-Paris Saclay : Mounir Atiq, Ludovic Minvielle, Transfer learning for fall detection, Tarket,

Sergio Peignier, Transfer learning, Guillaume Richard, Transfer learning for Temporal data, EDF , Nicolas

Vayatis, Director Centre Borelli, ENS-Paris-Saclay,
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