Intro

Interplay between data, physics and simulation models.
Link to industrial use-cases.

Mathilde Mougeot, ensllE & Centre Borelli, ENS Paris-Saclay, France.

StatMathAppli, Fréjus, September 279 2025

Motivation. Once calibrated on large sets, deep neural network models, have proven their
efficiency and speed of execution. Subject to a good understanding of a physical phenomenon,
simulation models can, in some cases, do without observational data, but their computational
cost can be prohibitive. Motivated by industrial use cases, this talk presents some recent works on
machine learning based on physics informed techniques, enabling efficient models to be obtained
in cases where the volume of observational data available is low.
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Intro The success of ML models

Data Sources & several Successes of "ML/AI" models
Al Foundations models

» Imagenet is a huge open source database :
14.10° labeled images for 10° categories,

... "quite expensive" labeling effort....

today pretrained models and DB are open source and
may be used fo image classification, object detection..
AlexNet [Krizhevsky et al., 2012], ResNet [Huang et al., 2017].

» Deepl. relied on the huge French-English
» GraphCast. This state-of-the-art model Linguee dictionary.

delivers 10-day weather predictions at un-
precedented accuracy in under one minute
based on 39 years (1979-2017) of historical
data from ECMWF’s ERA5 (21) reanalysis
archive.

» ChatGPT, LLM. trained on very large cor-
pus of text data.

» Foundation models. open-source and
o= pretrained models dedicated to various
tasks under various software licences...

| Top-performing deep architectures are trained on massive amounts of labeled data.
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Intro

The success of ML models

Learning a model from an algorithmic point of view...

# The Train Data and your New, Target data
(XTrain,yTrain)= load(MyTrainDataBase);
(XNew,yNew)= load(MyNewData);

# The NN model

from sklearn.neural_network import MLPClassi-
fier

clf = MLPClassifier(solver="lbfgs’, alpha=0.0001,
hidden_layer_sizes=(5, 2), random_state=1)
clf.fit(XTrain, yTrain)

# The Decision Tree model
from sklearn.tree impot DecisionTreeClassifier
treemod = DecisionTreeClassifier(

min_samples_split=10,min_samples_leaf=5min_impurity_decrease=0)

# Decision on new data
(XNew,yNew)=load(MyNewData)
pyNew=clf.predict_proba(Xnew)
treefit= treemod.fit (XTrain,YTrain)

# Error Evaluation
pyNew=treefit.predict_proba(Xnew)>0.5

1.

&

Input/ output (X, Y)
(Features, labels set) defined by the operational
need.

. Dataset. S = {(Xh yi)}?; ~D"a

learning/training sample of m iid pairs.
with D an unknown joint probability distribution
on the product space X ® Y

. Model H = {hg|hg : X — Y} a hypothesis

class, O parameters, classifiers or regressors
depending on the nature of Y.

. Loss function £(y, hg(x)) providing a cost of

ho (x) deviating form the true output y € Y.

The best hypothesis is the one that minimizes the
true risk, consequently, generalizes well :

Ro‘(ho) = E _[t(ha(x), y)]

"Learning" consists of finding a good hypothesis
function hg € H that captures in the best
possible way the relationship between X and Y.

hgopt = arg min sz(hg)
hg

. Optimization Procedure, hyperparameters...
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Intro ML in industry

Industrial
motivations
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Intro ML in industry

Conception : product design.

> New products are regularly manufactured with a long and costly development.

> Relative small data sets are gathered during the development of products such as
characteristics (X : color, shape, weight...) and performances (Y).

Tire design data Performances

Wet ground Breaking
braking speed

Performances

o Is-it possible to predict the performances (Y) of a new tire line given data previously
gathered from other lines? [de Mathelin, 2024]
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Intro ML in industry

"Usage" : ML for Automatic tire wear detection

Industrial objectives : Design an application to

1. Detect and localize a "new generation" wear indicator
in a tire image (X).

2. Estimate the wear level (Y)

Data base :

Gathering a supervised data base (X)Y) in costly, taking
tire pictures (X) in various conditions (views, lighting -with
and without- wear indicator...) then

evaluating "by hand" the wear quality (Y)

(raw information 0-100% , 4 grouped levels);

© 1000 labeled Tires images were collected :

500 used for learning (shared with the competitors)

® 500 images for blind evaluation.

‘xi"

An Al Challenge was organized in 2019 for Startups by the Paris region and
ENS Paris-Saclay in collaboration with Michelin company.
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Intro ML in industry

Production : decision making process.

> The final quality of the product strongly depends on raw materials (composition/proportion)
and fabrication. Fabrication needs to be fully understood, for automatic decision making
Process.

> As an illustration, the Calendering process smoothes out the rubber through contra-rotating
cylinders. Physical problem : Assure that the rubber has the desired properties.

e The rubber is assimilated as an incompressible
non-Newtonian fluid flow.

Example of Michelin’s use-case: N N
@ Tk + (M@ Ty +2), = Pe

(@n@ Ty, + (@D +v2) =7y

n(@,T)
pC,

A -
Ty +uyTy = T(T"" +Tyy) + ly@)?
Plp
| N U+ vy = 0
where T is the velocity, p pressure and T temperature,

£(i) is the strain rate tensor, y (W) = [2 ZE?J, and

[ the dynamic viscosity 7:

E, 1 1
1@T) = Ky @ expE (G~ )

e Numerical simulations help to understand the
process.
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Intro ML in industry

Machine Learning in the industry

Main observations :

>
>
>

Often small, moderate, evolving database. Ex. manufacturing process.
Few or not labeled data. Ex. Few production defaults.

labeled-data is often difficult and time-consuming to acquire.
Ex. Experimental design to help selecting costly observation outputs.

In many real-world applications, historical (training) data and newly collected (test) data
may often exhibit different statistical characteristics.

However, in many ML scenarios, training and test samples are supposed to be generated by
the same (unknown) probability distribution.

Still Strong Needs for monitoring and diagnosis based on machine learning (ML) .

Makes sense to re-use knowledge gained from related but distinct datasets, from physics,
from conception........
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Intro  Expert Knowledge & ML Modeling

Knowledge in ML modeling

Extra Prior knowledge can provide rich information not existing or hard to extract in limited
training data and helps improve the ability to generalize, and the plausibility of resulting models.

e Data knowledge .
1. Augmentation. Easy for Image classification tasks (symmetry, rotation...).
2. Feature engineering. xqw — x — fo(x) ~ y
Ex. Wavelet based scattering transform, Fourier transform.
Ex : sounds classification for Delphin challenge classification (frequential data).

3. Foundation models. Pre-trained models on alternative large data base, use of TL.

e Model Tailored knowledge [Features, architecture, function properties]

1. Design of specialized NN architecture associated with a given predictive task. Symmetry
groups as rotation, homothety, translation may implement an intrinsic geometry of fp
x = fo(x) ~y
Ex : Convolutional NN [CNN] by crafty respecting invariance along the groups of
symmetries. Pre-calibrated models (NN warm start).

2. Multi-Task Learning
Introduction of knowledge/ constraints in the cost function, in the optimisation process. Ex :
Physical Informed Neural Network

I Towards Transfer Learning, Domain adaptation, & Physics Informed Machine Learning..
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Intro Expert Knowledge & ML Modeling

Outline

1. Introduction. Knowledge & Machine Learning (ML).
The success of ML models
ML in industry
Expert Knowledge & ML Modeling

2. Transfer Learning

3. Physics Informed Machine Learning (PIML)
Physics Informed Neural Networks (PINNS)
Sampling of "collocation" points
Fixed-Budget Online Adaptive Learning (FBOAL)
Industrial Application. The Michelin Rubber Calendering Process
Geometry-Aware PINNS

4. To conclude
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Transfer Learning

Machine Learning models
&

Transfer learning
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Transfer Learning

Learning a Machine.

ML models aim to provide models with a good generalization capability on a Target domain.
Learning data, vs Target data/same domains, Target data/different domains.

Target domain (ex I).
Same Domain { X, P(X)} &
task 7 = {Y, P(Y|X)}.

Ficure - High Prediction capability.

P(x,y)
Joint distribution
differences

Target domain (ex II).
Different Domain & same task.

P(y/x)

concept shift

FIGURE — Low Prediction capability.

: P(x)

covariate-shit
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Transfer Learning

The Transfer learning framework

> Data collections : Source & Target
1. Source data S.
Xs ® Ys the source input and output spaces associated with S
Sx the marginal distribution of Xs, ts the source learning task

2. Target data T~
X7 ® Y7 the Target input and output spaces associated with 7~
Tx the marginal distribution of X7, t7- the Target learning task

A Source and Target data are not drawn from the same distribution.

> Focus on the Target Risk. R7-¢(h) = E[¢(h(x), y)] with £ the loss function.

x,y)~T

> Supervised data or calibrated Model available for the source domain (enough data).

Transfer learning aims to improve the learning of the target predictive function :
fr : X7 — Y7 for t7 using knowledge gained from S where S # T

S # T (joint distributions) implies several cases :
o Sx # Tx ie. Xs # X7 (spaces) or Sx(X) # Tx(X) (laws) or
o ty # ty (i.e. Ys # Y7 (target task) or S(Y/X) # T(Y/X) (conditional law)

... Seems to be a hard problem...
Success stories ?... Theoretical guaranties? Assumptions?, Negative transfer? ...

Answers to the industrial partners.... open source algorithms...
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Transfer Learning

Transfer Learning & Domain adaptation Methods

o Several approaches to transfer knowledge from Source to Target domain.

> Model-based. Transfer the model parameters learnt on the source data to the target model.

- Train model available, not necessary the source data- .
Ex. Image based tire wear estimation based on Deep architecture (Michelin) (Resnet...), Automatic fall
detection based on decision trees/ RF (Tarkett).

> Feature-based. Find a new representation space to bring feature spaces closer.
-Source and Target Input data available-. Ex. Domain adversarial neural networks (EDF, Michelin)

> Instance-based. Re-weight the source samples to bring the distributions closer.
-Source and Target Input data available-.
Ex. Multi-source domain adaptations for Product design (Michelin) or Electricity prediction (EDF)

“Waes e B
Y = el -

o Theoretical guarantees on the Target Risk given the Source Risk and discrepancy
Rr(h) < Rs(h, hy) + discas (S, T) + A

where Rq(h) = Eq(£(h(X), Y)),
discay, (S, T) = supy yeny |Ls(h B') — Lr(h, )|, La(h, h') = Eq(£(h(x), b (x))). h, b € H
h§ = arg min,cy Rs(h), h} = argmingc4 Rr(h), A = Rs(h7) + Lr(h3, hT)
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Transfer Learning

Transfer Learning & Domain adaptation Methods

> Model-based.

v

Feature-based.

> Instance-based. Re-weight the source samples to bring the distributions closer.
-Source and Target Input data available-.
Ex. Multi-source domain adaptations for Product design (Michelin) or Electricity prediction (EDF)

K 0% W m

poremenes TagetOnly 837(L16) 476049 3630029) 281(0.16)

. Ufom  285(0.10) 238008 22007 219009)

) o Bl 312(056) 2600015) 2320.10) 2210.5)

3 7 VAN 261(000) 247(015) 227(0.10) 209008
Performances

FicurE — Importance Weighting algorithm for the tire design use-case where source and target data respectively
correspond to the observations recorded before and after 2018.
All methods are provided with the source dataset, augmented with the few target labeled data: S U 7%

MAPE comparison for different K values.

[de Mathelin, 2024].
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Transfer Learning

Machine Learning models
for physics
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Transfer Learning

Modeling. Observation data and Numerical simulations

=

= M
Sensors @ Z

‘WM fm ‘MW‘K hﬁk Observations
M"M \JJMM}W

Data modelling

m } Df“\ﬁ‘ —;m—»mu}

» GraphCast. The state-of-the-art model delivers 10-day weather predictions
at unprecedented accuracy in under one minute based on 39 years (1979-2017)
of historical data from ECMWF’s ERAS (21) reanalysis archive.

Physics modelling

» Surrogate Models. Meta Model. Machine Learning models and numerical
simulations. (speed..)
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Transfer Learning

ML surrogate model

llustration with Deep Neural Network on a toy example.

Burger’s equation :input (x space , t time), output : speed of the fluid =
given parameter : v viscosity. Dirichlet boundary condition : ‘

Qutydu — Vgi; =0; u(0,x) = —sin(mwx); u(t,—1) = u(t,1) =0

Neural network Surrogate model.

fo trained with n = 100/1000 supervised observations.

ML model : NN architecture : 2-4 (x50)-1.

Evaluation on a Test data set, regular grid of points (256 (x) , 100 (t)).
E(u, &) = |Ju— 2|[3/[|ul|3 on a grid (256 (x) , 100 (1))

Supervised points Surrogate model E(u, &) = 0.17 Supervised points Surrogate model E(y, ) = 0.02
radicton by dota s B -
Pairwise Plot Error Pairwise Plot Error
G piise ot s P redicion by data-iven N etwors NP AN 1 s ot o s prciction by datatven N hetorks o P
0 10 10 i
o : / o
B L] D
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Transfer Learning

ML Surrogate model

llustration with Deep Neural Network on a toy example.

Focus on the Pde errors/residuals computed for Burger model (right/bottom figure) :
_2u(x,t) | A du(x,t) _ D%t ,_ .

R= =+ ilx, t) =5 —v=pg7 =0;

Nda[a = 1000, Neolloc=0, NN architecture : 2-4 (x50)-1. 50 000 epoch, Adam optimizer.
(u, &) = ||u— ||3/]|ul|3 on a grid (256 (x) , 100 (t))

R

PINNs model E(u, i) =

> Especially, in a "small data regime", the vast
majority of state-of-the-art machine
learning techniques are lacking robustness.

> The cost of data acquisition may be
prohibitive.
Experimental design are proposed to chose
the observations.

> ML fail to "model" the underlaying physics
phenomena (pde constraints not respected).

—The pde constraints are not respected... > We are inevitably faced with the challenge
— The NN model mimics the input/output rela- of drawings conclusions and making
tion decision under partial information.

but the underlaying physics is not caught.
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Transfer Learning

Physics Informed Neural Networks
PINNs are neural networks trained to solve supervised learning tasks while respecting any given laws
of physics described by general nonlinear partial differential equations. [Raissi et al., 2019].

Key ingredients :
1. A deep neural network model : hg € H

2. Asupervised data set. D, = {(X;,yi) i=1..n, X€ X,y € YV}
the training data (initial and boundary observations).

MSEgata = % i 1[h9(X) - yl]2

3. Equations” describing the physics.
Ex : Burger equation : Input : X = (x, t) output : u:
u du 8u

R(utxu)—g—l— ol %:0

iy , No mesh!

MSEpde _1 ZColloc R(u,', ti,

pde residuals cost on random collocation points.

4. A appropriate loss function L(hg, Dn, physics equations).

FiGure — [Cuomo et al., 2022]

Shared parameters 6 of the NN model hy(t, x) and R'”k(t x) are
"learned" by minimizing : ‘ MSE = WyataMSEgata + Wpde MSEpde
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Transfer Learning

Physical Informed Neural Netwotks
Open questions with an important impact for PINNs models, September 2020
> Supervised data. Observations (number, localization, boundary or inside the domain).
> Unsupervised data. Collocation points : number, localization, on a mesh grid, at random ...
> Trade-off between the two data and residual pde losses : MSE = wqata MSEata 4 Wpde MSE pge
>

PDE with given parameters (v) are easily learned by PINNs.
What about parameterized PDE?

> Impact of the geometry of the domain (design)?

Industrial PINNs Applications
> Surrogate modeling. Data-driven solution of pde. Fluid mechanics [Raissi et al., 2019]....
Solid mechanics,...
Application to rubber calendering process (non-Newtonian fluid thermo-mechanical
problems) [Nguyen et al., 2022]
> |dentification of unknown parameters. Data discovery of pde. [Raissi et al., 2019],
[Nguyen et al., 2022]

» Inverse problems.

Khoa Nguyen, PhD thesis, September 207 2024.
Development and assessment of physics-informed deep learning methods : to-
wards mutliphysics simulation in industrial contexts.
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PIML

Outline

3. Physics Informed Machine Learning (PIML)
Physics Informed Neural Networks (PINNS)
Sampling of "collocation" points
Fixed-Budget Online Adaptive Learning (FBOAL)
Industrial Application. The Michelin Rubber Calendering Process
Geometry-Aware PINNS
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PIML  PINNs

Physics Informed Neural Netwotks
[Raissi et al., 2019]
fo(t,x) is defined by : fp := ur + Nu] e o

e u(t,x) is approximated by a deep NN. % % DOF/* ﬁ\ D=l
\\ ,/

e Automatic differentiation helps to minimize

R(t, x) applying the chain rule for
differentiating compositions of functions. ‘Q

Pytorch, TensorFlow

%o
—

%o
gl

%l

Done

pde

The shared parameters 6 between the NN fy(t, x) and R,
the mean squared error.

(t, x) can be learned by minimizing

MSE = WgataMSEdata + WpdeMSEpde

® MSEgata = ZN““ [fo(t], xi) — u]? for chosen training data (initial and boundary).

Ndata
® MSE,qe = is the cost of pde residuals on random collocation points. No mesh!

| Supervised and Unsupervised Smart Mix
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PIML  PINNs

PINNs models

Importance of the Training observations.
Impact on the Pde errors computed for Burger model.

Ndata = 100, Neolloc=100005

ML model. NN architecture : 2-4 (x50)-1. 50 000 epoch, Adam optimizer.
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PIML  PINNs

Motivation : Operationnal Use cases & Pinns

Context: Two use-cases...
... And common equations

Cea

E ﬁg MICHELIN Model Grd with Resolved Processes

sogiavox= 3pprox. of Navier-

- Stokes equations
\ . @Decision
making )
" Validate a @Comprehensmn
* fabrication
“ decision e
| A
Al A
l |‘J )

High computational cost

Interest in Machine learning ~ *
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PIML  Sampling colloc

Sampling methods for collocation points in PINNS

In the PINNS framework, PDE residuals are computed and minimized on a set of collocation
points.

Various sampling strategies have been proposed for these training points, which can be divided
into two main sub-classes :

> the non-adaptive sampling approaches.
P The collocation points are often uniformly and randomly distributed,
as in the original work of [Raissi et al., 2019] that employed the Latin Hypercude Sampling (LHS), or
> manually and non-uniformly based on prior knowledge of the physical phenomena, as in the work
of [Mao et al., 2020] and [Nguyen et al., 2022] which is however problem dependent.

> the adaptive sampling approaches.
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PIML  Sampling colloc.

Non adaptive Sampling methods

Vanilla PINNS with randomly distributed collocation points often fail to predict accurately the
PDE solution in complex problems. If one dispose of prior Physical knowledge (discontinuity,
coupled physics, interest zone, expert guided). Properly chosen locations can increase
significantly the accuracy.

e Manual sampling in PINNs [Mao et al., 2020]. Error : left : O(102); right : O(10~°)

25
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PIML  Sampling colloc.

Non adaptive Sampling methods

® Prior Mesh knowledge based Information [Nguyen et al., 2022]

The non-adaptive sampling approaches are widely used in PINNS literature : straightforward and
efficient when dealing with various PDS problems, including PDEs providing that expert physical
knowledge is available.

llustration : calendar simulation process and pre-defined mesh grid.

— However, physical knowledge is not always available...
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PIML  Sampling colloc
Adaptive Sampling methods

Several adaptive collocation approaches have been developed.

> Residual-based Adaptive Refinement (RAR) approach, first introduced by [Lu et al., 2021],
adds new training collocation points to the location where the PDE residual errors are large.
Very efficient in enhancing the accuracy of the prediction in many complexe PDE problems.

— leads to an uncontrollable amount of collocation points (00) and computational cost at
the end of the training process.

> Residual-based Adaptive Distribution (RAD) approach, introduced by [Wu et al., 2023].
computes/estimates a probability density function based on PDE residuals, and then
resamples or adds new collocation points according to this pdf.

— strong benefits compared to vanilla PINNS in both forward and inverse tasks.
Generalizes several previous adaptive approaches [Peng et al., 2022], ...

> Residual-based Adaptive Refinement with Distribution (RAR-D) approach.

After a certain number of iterations, m points are added to the set of training collocation
points.

2 septembre 2025 27/ 46



PIML  Sampling colloc
Adaptive Sampling methods

The Probability Density Function (PDF) p(x), which is based on the PDE residuals, is defined as
follows :

e (x)

Blek(] ¢

p(x) o

where ¢(x) denotes the PDE residual for any point x, k > 0 and ¢ > 0 are two hyperparameters.

Introduced by [Wu et al., 2023] :

P Residual-based Adaptive Distribution (RAD) : after a certain number of iterations, the
collocation points are randomly resampled according to the PDF previously defined.

> Residual-based Adaptive Refinement with Distribution (RAR-D) : after a certain number of
iterations, m points are randomly sampled according to the PDF previously defined. Then
these points are added to the set of training collocation points.

> — only RAD allows the number of training points to be fixed during the training, while in
RAR-D, this number gradually increases and may lead to higher computational costs.

The performance of RAD and RAR-D also depends on the period of resampling method.
k and c hyperparameters of RAD and RAR-D, need to be adjusted.
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Notations : Q; : collocation set for eq. j.

x;i : collocation points in £; at loc. i.

PIML FBOAL

Adaptive Sampling methods

Fixed-Budget Online Adaptive Learning (FBOAL) [Nguyen, 2024]
Principle : The domain is decomposed into different sub-domains.
The collocation set is divided equally for each equation.

> The xj; are distributed so as to maximize Lj,;ide ie Q;is
updated by adding n new points x;l.,
Typically n = nN; n < 1that yield larger residuals Lgde'

. Jogu L
Vi<n Lpde(xji) > Xrglf;}{Lpde(x)
J

’
Update rule : Q}I.‘+1 = {x;ti<a U ij \ {Xji}iznt1

The N; — n points of ij with smallest residuals are
discarded

Updating is applied during the training process every

epochs, which introduces two new parameters : i and .

L{)de : PDE res. of eq. j.

’
X;; : new collocation points.

epoch
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PIML  FBOAL

Impact on collocation points/ Precision.

Burgers solution with v=0.01/1

Burgers equation.
ur 4 uuy —vu =0 forx € [—1,1],t € [0,1]
u(x,0) = —sin(mx)
u(=1,t) =u(1,t) =0

— Classical PINNs o | — Clossica PINNs
PINNS +RAD
= — PINNs#RARD.
— PINNs+FBOAL | — PINNs+FBOAL

PDE residuals
PDE residuals

¢ N X

FIGURE — Burgers equation : Absolute value of PDE residuals for v = 0.0025 after the training process for different
approaches. The curves and shaded regions represent the geometric mean and one standard deviation of five
runs. On the line x = 0 (left), At instant t = 1 (right).
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PIML  FBOAL

Impact on collocation points/ feed-back on the density

Burgers equation. ML Model u( x, t, v = 1y)
up + uuy — vuy, =0 forx € [—1,1],t € [0,1]
u(x,0) = —sin(mx)
u(—=1,t) =u(1,t) =0

,\_/\_,_\ Vo
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FIGURE — Burgers equation : Density of collocation points after the training with FBOAL.

v = 0.0025 (left); v = 0.0076 (center); v = 0.0116 (right)
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PIML  FBOAL

Impact on collocation points/ Training cost benefits

Burgers equation. E—
ur+ uuy — vuy =0 forx € [—1,1],t € [0, 1] '
u(x,0) = —sin(mx) -

u(—1,t) =u(1,t) =0

— Classical PINNs.

Classical PINNs - Classical PINNS.

i

— PINNs+RARD
—— PINNs+FBOAL

Number of epochs (k)

-+~ PINNS+RARD st
=~ PINNs+FBOAL

PINNS +RARD
PINNs +FBOAL

Relative L? error
Number of epochs

FIGURE — Burgers equation : Performance of classical PINNs and PINNs with adaptive sampling approaches. The
curves and shaded regions represent the geometric mean and one standard deviation of five runs. In (c) the solid
lines show the cost function during the training, the dashed lines show the errors on the testing mesh, and the
black line shows the threshold to stop the training. Relative £ error (left); Number of training iterations; Loss

for v = 0.0025 (right).

Classical PINNs PINNs + RAR-D PINNs + RAD PINNs + FBOAL
Training time 337+ 15 41.0 £5.8 38.8 + 23 215+ 2.7
Number of resampling 0+0 201+ 75 210 £ 77 48 £ 2

TABLE — Burgers equation : Training time (in minutes) and the number of resampling for v = 0.0025.
The training is effectuated on an NVIDIA V100 GPU card.
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PIML FBOAL

Impact on collocation points/ v Adaptation.
Parametrized Burgers equation. ML model u( x, t, 1)
Training, 40 values of v € [0.0025, 0.0124].

ur + uuy — vuy =0 forx € [-1,1],t € [0,1]
u(x,0) = —sin(mx)
u(—1,t) =u(1,t) =0

FIGURE — Parametrized Burgers equation : Comparison of classical PINNs and PINNs with adaptive sampling
approaches. The zone in gray is the learning interval for v (interpolation zone). The curves and shaded regions
represent the geometric mean and one standard deviation of five runs. In (c) the solid lines show the cost
function during the training, the dashed lines show the errors on the testing data set, and the black line shows
the threshold to stop the training. Relative £? error (left); Number of collocation points; Cost function during
the training (right).

Classical PINNs PINNs + RAR-D PINNs + RAD PINNs + FBOAL
Training time 13.2£0.0 1.4+£03 9.1+35 78 £ 19
Number of resampling 040 34+38 204 £ 71 173 + 25

TABLE — Parametrized Burgers equation : Training time (in hours) and the number of resampling of each
methodology. The training is effectuated on an NVIDIA A100 GPU card.
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PIML FBOAL

PINNS Sampling methods

Dont’t use PINNs methods without adaptation!

> FBOAL adaptively adds more points to important zones (coupling, discontinuity)

> With appropriate chosen hyperparameters, FBOAL provides better accuracy and faster
convergence than vanilla PINNS with random points

> FBOAL can provide prior knowledge of high residuals.
— Help conventional numerical solver in the construction of mesh.

Limitations and Perspectives
> No theoretical results for convergence
> Optimal hyperparameters of FBOAL are problem-dependant
> The decomposition domain step can be further investigated (e.g. high-dimensional)

> The division of set points for multi-physics problems may not be optimal.
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PIML Calendering
Rubber calendering process

> Calendering process : smooth out the rubber through contra-rotating cylinders

> Physical problem : assure that the rubber has the desired properties

Rubber: assimilated as an incompressible non-Newtonian fluid flow.

@@ Tte) + (@ )y + 7)), =P
. , (0@ D), + (1@ +22)) =Py

J . .
,9;; ! ety = (Txx+Tyy)+M| @2

U+, =0

where i i the velocity, p pressure and T temperature,

~. ] (1) is the strain rate tensor, y () = ZZEEj,and

the dynamic viscosity 7:

1@, T) = Kly @)™ eXp(—(-——))
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PIML  Calendering

Industrial Physics models.
Rubber calendering modeling

To generate reference High-Fidelity (HF) solutions of velocity, pressure, and temperature fields,
the equations are discretized and solved using an in-house generic and multi-purpose finite
element solver named MEF++ and co-developed by Laval University and Michelin. [?].
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PIML  Calendering

Rubber calendering process - inverse problem

Goal : identify the true value of the thermal conductivity from sensors measurements.

Dimensionless equation :

U Ty +u, T, =
XX vy Pe
1 Temperature T "
[ | ] s
» 00 ) 050
-3 /' 02

> Using only two lines of sensors, PINNs can
identify accurately the true values of
unknown parameters.

> Adaptive strategies outperform fixe
strategies

1 Br 2
— (T +Tyy) + Er)(u, T|y(d)|

10°
107t > 5
T N
c
° 1
+ 102 |
5 4
2 e
103
/— Truevalue  —— FBOAL
{487 — Cassic — RAD
104 ! E.E ! -3 RARD
200 400 600 80 1000
Epochs (x100)
| Strategy €B,/Pe | €1/Pe
Random points | 6.50 129
FE mesh 122 24.7
FBOAL 0.35 | 8.05
RAD 0.71 7.00
RAR-D 0.69 | 0.11
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PIML  Geometry-Aware PINNS

Geometry Aware Deep Energy Method

> [Nguyen et al., 2024] proposed to encodes the geometric knowledge into the PINNS model
and to minimize a loss function on the potential energy of the system and not on residual
equations.
> The potential energy of the system is minimum at the equilibrium state and computed by
the difference between internal and external energy, here approximated by Monte Carlo.
> The potential energy of the systems over all geometries are minimized.
Prediction for

Learning Feedforward‘networks (*) displacement Desired
geometries . output

oS YR
o e

Spatialtemporal
coordinates

-

L L elle
o’ =

(*) 5 layers, 100 neurons per layer, Yes

tanh activation in this work. If available

Nﬂey

€= ) (@) +€
2

> Focus is made of mechanical problem using weak formulation.
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PIML  Geometry-Aware PINNS

Geometry Aware PIML.

Displacement of a Beam with Linear Elasticity.

Ex. Training :

Experimental design.
» 5 parameters encoding the geometry

P LHS to compute 50 geometries

P The left side clamped, right side subjected to a traction
P = (0, —T)N.

P homogeneous, isotropic material with Young’s modulus [
E = 1000N/m?, and Poisson’s ratio v = 0.3. ™ '

P Reference solution obtained by Finite Element Method and Nl

Fenics software

Ex. Testing

Coding the Geometry...
P Parametric : explicit parametric encoding.

» PCA-Coord : spatial coordinates for the geometric representation and
PCA for the encoding (objects’ boundaries). o

Reference

P VAE-Coord : spatial coordinates for the geometric representation and - ’I- "
VAE for the encoding.

» PCA-Image : images for the geometric representation and PCA for the
encoding. (objects’ images are available.)

P VAE-Image : images for the geometric representation and VAE for the
encoding.
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Geometry Aware PIML.

Displacement of a Beam with Linear Elasti

e Importance of adaptive sampling

Parametric encoding. lllustration.

Without FBOAL (absolute error)
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PIML  Geometry-Aware PINNS

Geometry Aware PIML

Toy tire loading simulation with Hyperelasticity

P Model the 2D displacement of toy tires composed of
hyperelastic materials (rubber). >

P Tires are made of rubber with a Young modulus
E = 21.10°Pa and a Poisson’s ratio v = 0.3.

Before loading After loading
Sketch of a tire before and after

P Tires follow the Saint-Venant Kirchhoff hyperelastic model. loading

About the geometry.

Radius of the inner
and outer boundaries.

P 55 Tire geometries (5 x 11) given radius of the
inner and outer boundaries, and the grooves.

> Different coding schemes : PCA-coord,
VAE-coord, PCA-image, VAE-image
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PIML  Geometry-Aware PINNS

Toy tire loading simulation with Hyperelasticity
Performance of tire load simulation.
Best VAE-coord encoding (non linear)

Improvement using adaptive sampling. Illustration
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Conclusion

Outline

The success of ML models
ML in industry
Expert Knowledge & ML Modeling

Physics Informed Neural Networks (PINNS)

Sampling of "collocation" points

Fixed-Budget Online Adaptive Learning (FBOAL)

Industrial Application. The Michelin Rubber Calendering Process
Geometry-Aware PINNS

4. To conclude
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Conclusion

A personal message to share...

Collaborations

between academics and “Z” partners often raise original scientific questions (Z =
biologists, industrialists, socio-economists, etc.).

But, Never forget we do not have the same jobs!

Research time.

Don’t try to solve first the "Z issue", but try to rephrase first a scientific question, and then
bring an answer to this solution in you own field.

Don’t leave your "scientific Island unless you know to find your way back! ... unless you
want to change your work.

Valorisation time. Your "field scientific answer" will bring an answer to the Z issue...(maybe
with some adaptation)

Innovation time.
Your " scientific answer" applied to the Z needs will create a certain amount of added value

(economical value).

Thank you!
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Conclusion

A joint work

thanks to the Industrial Data Analytics and
Machine Learning chair

O\

Industrial Data Analytics
&Machine Learning

Antoine de Mathelin, Towards reliable machine learning under domain shift and costly labeling, with
applications to engineering design Michelin & IDAML, Centre Borelli

Khoa Nguyen, Development and assessment of physically informed learning methods : enhancement of
multi-physical simulation in industrial contexts, CEA, Michelin & IDAML, Centre Borelli

Fouad Oubari, Deep Generative design for Industrial Products Michelin & IDAML, Centre Borelli

Rémy Vallot, Convergence acceleration of a nonlinear solver by statisticalphysically informed learning
Michelin & IDAML, Centre Borelli, UTC

CEA Team since 2018. C. Millet, G. Kluth, S. Oger, JC. Weill,....
Michelin Team since 2018. R. Décatoire, F. Deheeger, T. Dairay, R. Meunier,... .

Borelli, ENS-Paris Saclay : Mounir Atiq, Ludovic Minvielle, Transfer learning for fall detection, Tarket,
Sergio Peignier, Transfer learning, Guillaume Richard, Transfer learning for Temporal data, EDF , Nicolas
Vayatis, Director Centre Borelli, ENS-Paris-Saclay,

a
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