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multitrait G+E animal model

▷ Every phenotypic observation on an animal is determined by environmental and
genetic factors and may be defined by the following model:

Phenotypic observation

= envir. effects + genetic effects + resid. effects
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bivariate mixed model (G+E)

With bivariate phenotypes, the most classical inference model in genetic is{
y1 = X1β1 + Z1a1 + ε1
y2 = X2β2 + Z2a2 + ε2.

yj the phenotype vectors (neither identically distributed nor independent)
βj parameter vectors to estimate, Xj design matrices related to fixed effects,
aj unobservable (latent) vectors, Zj incidence matrices related to genetic effects
εj residual vectors with components assumed i.i.d.

Particularly, the genetic effets (referred to as breeding values) are

ai ,j = 0.5(aiS ,j + aiD ,j) +Mi ,j ,

where aiS ,j and aiD ,j are the BVs of the sire and dam Mi ,j are the Mendelian sampling
terms with distribution

(Mi ,1,Mi ,2) ∼ N (0,G/2) if no inbreeding
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From the classical mixed model to Copula mixed model

The variance of the random terms (latent) is

var(a1, a2) = G ⊗ A =

(
σ2
a1A σa12A

σa12A σ2
a2A

)
, A the kinship matrix,

and for i = 1, . . . , n

εi ,j ∼ N (0, σ2
j ), (εi ,1, εi ,2) is assumed jointly Gaussian

Then, REML precedures are used to estimate parameters.

↪→ The multivariate-Gaussian assumption is often unrealistic due to the dependence
structure of the observations, we propose the generalization:

εi ,j ∼ N (0, σ2
j ), (εi ,1, εi ,2) has copula Cθ

.
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Copulas

Definition: A copula C : [0, 1]d → [0, 1] is the multivariate cumulative distribution
function (c.d.f.) of a random vector whose marginal distributions are uniforms on [0, 1].

Theorem of [Sklar(1959)]

Let X = (X1, . . . ,Xd) be a d-dimensional random vector with c.d.f. F and let
F1, . . . ,Fd be the marginal c.d.f. of X assumed continuous. Then it exists a unique
copula C such that:

F (x) = C{F1(x1), . . . ,Fd(xd)}, x = (x1, . . . , xd) ∈ Rd .

▶ The copula C characterizes the dependence structure of vector X .

A. Sklar.

Fonctions de répartition à n dimensions et leurs marges.
Publications de l’Institut de Statistique de l’Université de Paris, 8:229–231, 1959.
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Contour plots of bivariate distributions with Gaussian margins
and several copula

The lack of consideration for an appropriate dependence structure (e.g., wrongly
assuming a Gaussian distribution) may lead to poor estimation of variance parameters.

Rohmer, T., Ricard, A., David, I.

Copula miss-specification in REML multivariate genetic animal model estimation,
Genetics Selection Evolution, May 2022
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On real data from growing pig I

Figure: Contours plot of the fitted copula from pseudo-observations for CFI10 and BW100
(rotated 90 degrees Clayton copula): (left) uniform scale, (middle) gaussian scale, (right)
Large-white pigs!
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Maximum likelihood estimation

Because the BVs aj are unobservable, the log-density is

log fY (y) = log

∫
2N

fY |a(y |a)fa(a)da.

The MLE is solution with respect to ξ = (β1,β2, σ
2
1, σ

2
2, θ, σ

2
a1 , σ

2
a2 , σa12) of the system

equations
∂

∂ξ
log fY (y ; ξ) = 0.

Remember that

a = (a1, a2) ∼ N2N (0,G ⊗ A) ;

Yij |Ziaj ∼ N (Ziaj + xijβj , σ
2
j )

(Yi ,1,Yi ,2)|(Zia1,Zia2) has copula Cθ;
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Stochastic gradient descent algorithm

Remember we have to solve
∂

∂ξ
log fY (y ; ξ) = 0.

First note that he Fisher’s identity states

∂

∂ξ
log fY (y ; ξ) = Ea|y

(
∂

∂ξ
log f(Y ,a)(y , a; ξ)

)
.

An SGD algorithm is
for m ∈ 1, . . . ,M do:
▶ Simulate a(m) from the conditional distribution of a|y
▶ Update the parameter:

ξ(m) = ξ(m−1) + γm
∂

∂ξ
log f(Y ,a)(y , a

(m); ξ(m−1))

for a well-chosen learning rate γm.
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Simplifications

The update step can be rewritten as

G (m) = G (m−1) + γ1,m
∂

∂ξ
log fa(a

(m)) ,

(β, σ2
j )

(m) = (β, σ2
j )

(m−1) + γ2,m
∂

∂ξ
log fY |a(y |zTa(m))

and

θ(m) = θ(m−1) + γ3,m
∂

∂ξ
log fY |a(y |zTa(m)).
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Simplifications

The update of the covariance matrix for the genetic effects is

G (m) = G (m−1) + γ1,m
∂

∂ξ
log fa(a

(m)) ,

A is a very huge and dense matrix, working with A can be numerically complex. But
A−1 is very sparse! With some simplifications, we can work only with A−1:

∂

∂ξ
log f

(
a
(m)

)
=

1

2

(
trace

((
G (m−1) ⊗ A

)
×
(
∇G−1(m−1)

)
⊗ A−1

)
−

(
a
(m)

)T ((
∇G−1(m−1)

)
⊗ A−1

)
a
(m)

=
1

2

(
N × trace

(
G (m−1) ×

(
∇G−1(m−1)

))
−
(
a
(m)

)T ((
∇G−1(m−1)

)
⊗ A−1

)
a
(m)

)
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Simplifications

It can be rewritten as can be rewritten as

G (m) = G (m−1) + γ1,m
∂

∂ξ
log fa(a

(m)) ,

↪→ based on trace of sparse matrix

(β, σ2
j )

(m) = (β, σ2
j )

(m−1) + γ2,m
∂

∂ξ
log fY |a(y |zTa(m))

and

θ(m) = θ(m−1) + γ3,m
∂

∂ξ
log fY |a(y |zTa(m)).

↪→ ↪→ more complex analytic formulations (derivatives of copula density) but no real
challenge to efficiently compute it.
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Simulation of the conditional distribution of BVs given
observations

▶ for Gaussian copula, a|Y has explicit Gaussian distribution with covariance
((ZG ⊗ AZT )−1 + (R ⊗ In)

−1)−1.

↪→ That can be sampled using a Cholesky decomposition

▶ for non-Gaussian copula, a|Y does not have an explicit distribution
(∝ f (Y |a)f (a)), and there is not easy resampling sheme.

↪→ Hybrid MCMC-Metropolips-Gibbs block sampling

Rohmer, T., Bruning, V. and Kuhn, Estelle

G+E copula model to improve the estimation of the genetic parameters in bivariate mixed model,
submitted, 2025
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On simulations

Figure: Boxplot of the estimated genetic correlation (left), residual correlation (right), using
B = 50 runs. The Clayton model using MLE (SGD) and the Gaussian model using REML are
compared. For the two models, data are sampled through Clayton copula for the residual part
from 9900 animals under selection using a truncation selection process. Blue dotted line is the
true value of the parameter
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On real data II

varcomp σ2
a1 σ2

a2 σa12 σ2
e1 σ2

e2 θ h2CFI10 h2BW 100 ρe iterations
AI-REML 0.56 0.37 -0.02 0.38 0.54 -0.18 0.59 0.41 -0.39 7
rC-SGD 0.52 0.39 -0.01 0.56 0.64 -0.28 0.48 0.38 -0.20 121

Table: Estimation of the variance components using Gaussian inference model with AI-REML
procedure and using rotated 90 degree Clayton inference model with SGD procedure, using 3
generations, n = 1749, N = 4653.
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Next steps

1. From bivariate to multivariate analysis.

↪→ Preconditionning the GD step by Fisher’s information.

2. R package

↪→ for users

3. Robustness to a model misspecification? (e.g. copula, or marginal distribution)
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