Combining mixture models and Markov chains to explore spatio-temporal dynamics of child wasting in southern Madagascar

Matthieu Texier ^{1,3} & Pierre Masselot ² & Nourddine Azzaoui ³ & Jacques Gardon ⁴ & Simon Carrière ⁴

 1 METIS, Sorbonne Université - 2 London School of Hygiene and Tropical Medicine - 3 LMBP, Université Clermont Auvergne - 4 HSM, Université de Montpellier, IRD

04 September 2025

- Context & Problematic
- Motivation
- Material
- Model
- 5 Inference Algorithm Validation
- Results
- Discussion / Conclusion

- Context & Problematic
- 2 Motivation
- Material
- 4 Model
- 5 Inference Algorithm Validation
- Results
- Discussion / Conclusion

Undernutrition in Madagascar

- Madagascar, face regular Food Insecurity crisis especially in the south of the country.
- Study area correspond to the Big South where some place could take day to be joined from cities.
- Focus on child wasting (deficiency of muscle and fat), malnutrition type that need special attention for emergency care.
- One characteristic of such a country is the weak availability of data

Wasting

- Child Wasting is testing by comparing Weight / Height or Mid-upper arm circumference against a threshold.
- Test categorise child with Severe Acute Malnutrition (SAM) or Moderate Acute Malnutrition (MAM) and the sum is called General Acute Malnutrition (GAM).
- Notice that {SAM} ⊂ {GAM}
- GAM prevalence is considered as a markor of Food Insecurity whereas SAM prevalence may vary with health problem.
- For now we don't have a good "quantitative" representation of space and time variability for incidence or prevalence of Wasting in the study area.

- Context & Problematic
- Motivation
- Material
- 4 Model
- 5 Inference Algorithm Validation
- 6 Results
- Discussion / Conclusion

IPC Analysis

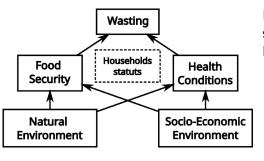


Figure: IPC Acute Malnutrition Classification 2021 : from left to right, Current May - August ; Projected September - December ; January - April

Early warning from current situation, normals knowledge and environmental contributing factors

Conceptual framework

From this framework with statistics we can improve knowledge on :

- Variables (e.g. distribution)
- Relations (*e.g.* regression)
- Evolution
- Spatial differences

- Context & Problematic
- 2 Motivation
- Material
- Model
- 5 Inference Algorithm Validation
- Results
- Discussion / Conclusion

Exhaustive Surveys of Child Wasting prevalence

Some characteristics of the dataset :

- 2000 trimesters values / 6 years
 / maximum of 15 trimesters
- Fiability of the measure
- Good Spatial precision
- Sparcity and missing not at random
- T1 (Lean Season): 27% T2: 13% T3(Post Harvest season): 40% T4: 20%

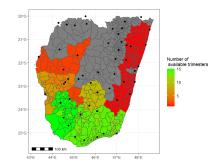


Figure: GAM Trimester prevalence availability

GAM Map example

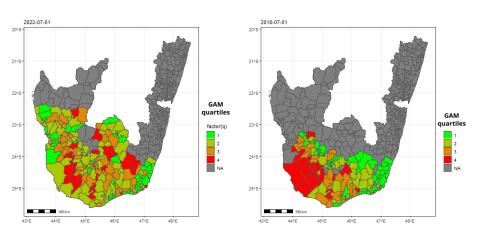


Figure: GAM prevalence maps categorised by quartiles of the whole distribution

11/24

TEXIER (SU-METIS) Stat Math Appli 04/09/2025

SAM & GAM characteristics

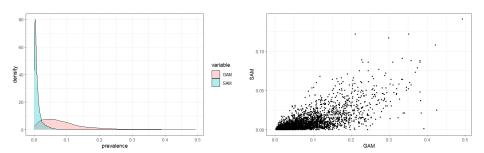


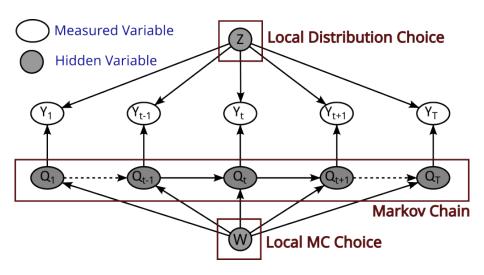
Figure: Left : density plots of GAM and SAM prevalence. Right : scatter plot of SAM vs GAM

- Context & Problematic
- 2 Motivation
- Material
- Model
- 5 Inference Algorithm Validation
- 6 Results
- Discussion / Conclusion

Model principles

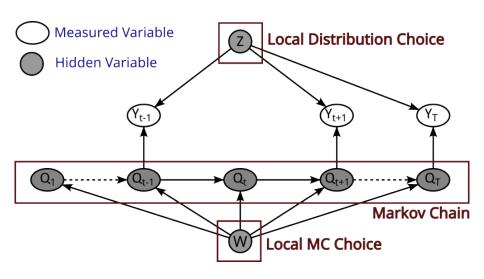
We want to:

- mimic Human decision processus
- propose intelligible models for nether statistician, nor scientist
- give them theoretical knowledge about what they are doing


Constraints:

- Include all municipalities even if they have few datas
- Have a good statistical power
- Take account when data are produced (seasonality)

Solutions:


- Clustering with Beta Mixture
- Work on time transition with "periodic, time-inhomogeneous Markov chains"
- 2 type of model: "1d" for GAM or SAM and 2d for a join (GAM, SAM) vector.

Model with classical HMM

Our Model

Model equation

$$W_{j} \underset{\text{iid}}{\sim} \mathcal{M}(1,\epsilon), \quad W_{j} \in \{1,\ldots,L\}$$
 $Z_{j} \underset{\text{iid}}{\sim} \mathcal{M}(1,\rho), \quad Z_{j} \in \{1,\ldots,K\}$ $Q_{j,1:T}|W_{j} \underset{\text{iid}}{\sim} \operatorname{Markov} \operatorname{Chain}(R_{W_{j}}), \quad Q_{j,t} \in \{1,\ldots,q_{max}\}$ $Y_{j,t}^{(1)}|Z_{j}, Q_{j,t} \underset{\text{iid}}{\sim} \operatorname{Beta}(\gamma_{Z_{j}}^{(1)}) \text{ truncated on } I(Q_{j,t})$ $Y_{j,t}^{(2)}|Z_{j}, Q_{j,t} \underset{\text{iid}}{\sim} \operatorname{Beta}(\gamma_{Z_{j}}^{(2)}) \text{ truncated on } I(Q_{j,t})$ $Y_{j,t}^{(2)}|Z_{j} \text{ and } Y_{i,t}^{(1)} \not\perp Y_{i,t}^{(2)}$

Partition

- 1d Tercile (as meteorological seasonal prevision)
- 2d Following \sim equi-partition from a gaussian copula with ho=0.5

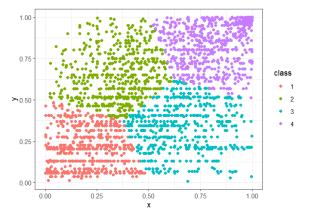


Figure: \sim equi-parition for a gaussian copula with $\rho=0.5$

- Context & Problematic
- 2 Motivation
- Material
- 4 Model
- 5 Inference Algorithm Validation
- Results
- Discussion / Conclusion

Expectation Maximization Algorithm

E-step:

 Forward - Backward algorithm for each (ZW) pair and each municipality

M-step:

- beta parameters need numerical optimisation that we do with a newton method
- (2d) we simplify the join beta distribution with a "Mean field" approach. ¹

To select number of clusters we use BIC and ICL.

Validation

Principles:

- Sampling with parameters next to our results
- Conserve the same structure of our dataset (missing datas)

Results:

- Good estimation of beta parameters for 3/4 classes
- Good accuracy of Z classification (1d : \sim 0.96) for 3/4 classes
- Limited in the number of class detection
- Not enough data for two periodic Markov chains
- Good estimation of MC parameters with one chain

- Context & Problematic
- 2 Motivation
- Material
- 4 Model
- 5 Inference Algorithm Validation
- Results
- Discussion / Conclusion

Results

- Map of wasting
- Normals estimation by trimesters and municipalities
- Markov chain converge quickly

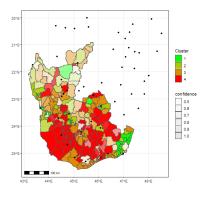


Figure: Wasting clustering map from GAM

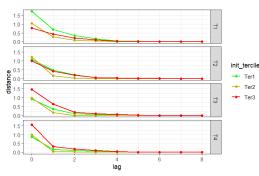


Figure: Evolution of a KL distance of probabilistic prevision based on current observation from normals

- Context & Problematic
- 2 Motivation
- Material
- 4 Model
- 5 Inference Algorithm Validation
- 6 Results
- Discussion / Conclusion

- Relatively unexplored field
- Partners seems to be happy with this first results
- Useful results for more popular models in environmental epidemiology (multi-level regression, distributed lag model)
- Useful step for prevision (e.g. provide a reference)
- Which methods to include side datasets (like cluster survey or Nutrition Center admissions) in order to use more operational data, to proceed good fill-in.
- Is there solution to increase number of Periodic Markov Chain