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Sequential Hypothesis Testing

Setup: We observe samples X1, Xo, ... sequentially from distribution vy
Goal: Test Hg : 8 = 6 vs Hq : 8 = 07 with as few samples as possible
Constraints: False positive probability < , false negative probability < 3
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Sequential Hypothesis Testing

Setup: We observe samples X1, Xo, ... sequentially from distribution vy
Goal: Test Hg : 8 = 6 vs Hq : 8 = 07 with as few samples as possible
Constraints: False positive probability < , false negative probability < 3

When do we need to test ?
« Clinical Trials

Hl - A/B Testing
g:;;;rt\ﬁ;isvig - Fraud Detection




Sequential Probability Ratio Test

Setup: We observe samples X1, Xo, ... sequentially from distribution vy
Goal: Test Hg : 8 = 6 vs Hq : 8 = 07 with as few samples as possible
Constraints: False positive probability < , false negative probability < 3

Sequential Probability Ratio Test (SPRT) (Wald, 1945):

Test statistic: likelihood ratio H, 1]{01()())
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Sequential Probability Ratio Test

Setup: We observe samples X1, Xo, ... sequentially from distribution vy
Goal: Test Hg : 8 = 6 vs Hq : 8 = 07 with as few samples as possible
Constraints: False positive probability < , false negative probability < 3

SPRT for one dimensionnal exponential families: Stop at 7 = min(r, ) with
decision d = i if r = 7; where

T = inf {n :)_<n < o + KL(V907V91) - |Og(1/6)/n}

0, — 6o
= KL — log(1
71 = inf {n :Xn > — (ngljgg? — ng( /e)/n } :

KL(wg,, vp,) is the KL divergence between the two distributions and Xn is the
empirical mean of the samples up to time n.



The Privacy Problem: A Medical Trial

Scenario: Testing if new drug works better than placebo
Ho: Drug success rate = 30% (Same as placebo) vs  Hq: Drug success rate = 70%

Each patient outcome: X; € {0,1} (failure/success)

0 11 0. 1 1 ? Accept Hyq
Patients in clinical trial
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The Privacy Problem: A Medical Trial

Scenario: Testing if new drug works better than placebo
Ho: Drug success rate = 30% (Same as placebo) vs  Hq: Drug success rate = 70%

Each patient outcome: X; € {0,1} (failure/success)

0 11 0. 1 1 ? Accept Hyq
Patients in clinical trial

Question: What was patient 7's outcome? Success (1) or Failure (0)?
The stopping decision reveals patient 7 had a SUCCESS!

Privacy violation: Patient 7's medical outcome is leaked by our decision to stop



Privacy in Sequential Decisions

] v
Clinical Trial A/B Testing Fraud Detection
- Testing new drug vs - Users see different - Monitor transactions
placebo versions - Alert timing reveals:
- Stopping pattern - When we conclude - Transaction
reveals: reveals: patterns
- Treatment - User behavior + Detection
effectiveness - Conversion rates methods

- Patient responses

Core Problem: When we stop reveals what we observed



Differential Privacy

Neighboring Datasets: Two datasets
D,D’" are neighboring if they differ by
exactly one record.

Differential Privacy (Dwork, Roth, et al,,
2014): A randomized mechanism M is
DP if for any neigboring datasets D and
D" and for any events S:

-DP- PIM(D) € 9]
e-DP: log (W) <eg
(a, €)-Rényi DP:  Do(M(D)|IM(D")) < e

where D, is the Rényi divergence of
order a > 1.

Stopping Time Distributions

Deterministic Algorithm
[ D
D/
‘ T
D TD!

Private Algorithm

| >
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Privacy adds randomness to mask the
stopping decision pattern



Our Method: DP-SPRT

DP-SPRT Algorithm (blue = privacy additions to SPRT):

Input: Hypotheses 6q, 6y, error probabilities «, 8, noise distributions Dz, Dy, correction
function C(n, x), error allocation ~

1. Sample threshold noise Z ~ D,
2. Forn=1,2,3,...do

3. Sample query noise Y, ~ Dy

b, Compute noisy average X, = 1 3> X; + =

G, Compute noisy threshold 79 = o + KL(""O’V”WLTL°§)(1/(”ﬁ))/” —C(n,(1=7)B) - £
6. Compute noisy threshold 77 = yuy — KL(”"“’”90)61"50(1/(”'”))/" +C(n, (1 = y)a) + 2
7. If noisy average X, is below noisy threshold 7’6’ then Halt and accept H

8. Else if noisy average X, is above noisy threshold T then Halt and accept 4

Y, and Z are used for both conditions unlike when composing AboveThreshold 7



DP-SPRT: Privacy

Table: Comparison of DP-SPRT instantiations

Laplace Noise Gaussian Noise
Noise distributions Yp ~ Lap(4/e) Y, ~ N(0,0%)

Z ~ Lap(2/e) Z ~ N(0,0%)
Privacy guarantee e-Differential Privacy  («,e(«))-RDP

s o2+02) log(n®
Correction function C(n,x) '8 <)/ V2eit Z)In B(e)/2)

A~ A

Correctness: DP-SPRT satisfies Py, (d = 1) < a and Py, (d = 0) < 8 when the
distribution Dy is symmetric and the correction function C(n, x) satisfies:

ZP(Y”—Z > C(n,x)> < X
n o n 8

n=1



Near-Optimal Sample Complexity (DP-SPRT with Laplace noise)

Lower Bound (any e-DP test):

log(1/5)
min(KL(ygo, Vg, ), e TV(V@O, Vg, ))

where TV is the total variation distance between two distributions.

E[r] >

Sample Complexity Upper Bound (Laplace Noise):

log(1/8) (61 — o) log(1/8)
E[T] 5 max (KL(V907V91), € KL(V907V91) >

For Bernoulli distributions, we have

KL(vg,, vo,)
— — TV
01 - 90 914)90 (V907 V@q)

DP-SPRT with Laplace noise is near-optimal



Experimental Results: Performance Comparison

Setup: Bernoulli(pg = 0.3) vs Bernoulli(p; = 0.7), a = 8 = 0.05, 1000 trials

Sample Complexity vs Privacy Level

4000 —$— Classical SPRT
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2 —3— DP-SPRT Laplace-Sub
‘o 3000 —F— DP-SPRT Gaussian
€ —3— PrivSPRT
2
2
S 2000
o
o
=
1%}
& 1000
(]
=
01 o
1071 100 10! 102
Epsilon (g)

On average, DP-SPRT variants
outperform PrivSPRT (Zhang, Mei, and
Cummings, 2022) across privacy levels

Error Control Comparison

Target o = 0.05
0.06
T o.05
<
‘a
£ 0.04
w
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w
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T T T T
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All DP-SPRT variants guarantee error
control, while PrivSPRT can violate
error targets due to empirical tuning
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Conclusion

Privacy:

- Real-world applications NEED privacy (regulations, competition, ethics)
- Sequential decisions leak sensitive information

1



Conclusion

Privacy:

- Real-world applications NEED privacy (regulations, competition, ethics)
- Sequential decisions leak sensitive information

Our Contributions:

. Theoretically calibrated private sequential test with guaranteed error control

Near-optimal sample complexity matching lower bounds up to a constant in
some regimes

. Practical implementation with no empirical tuning required, low variance in
stopping times, and subsampling amplification in high-privacy regimes

1



Conclusion

Privacy:

- Real-world applications NEED privacy (regulations, competition, ethics)
- Sequential decisions leak sensitive information

Our Contributions:

. Theoretically calibrated private sequential test with guaranteed error control

Near-optimal sample complexity matching lower bounds up to a constant in
some regimes

. Practical implementation with no empirical tuning required, low variance in
stopping times, and subsampling amplification in high-privacy regimes

Thank you! Questions?
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Distribution of Stopping Time
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Privacy Guarantees

Theorem (Privacy)
Let A be the DP-SPRT algorithm and 7 the (random) stopping time.

(i) e-DP: If noise mechanisms Dz and Dy satisfy ez-DP (sensitivity 1) and ey-DP
(sensitivity 2), then DP-SPRT satisfies (e7 + ey)-DP

(ii) (a, €)-RDP: If mechanisms have RDP profiles £7(a) and ey(«), then:

Iog (2EZ~DZ [E(T,a)NA(D’)[T‘ZF])
20— 1)

a __14252(200 +ey(a) +

Do (A(D)[A(D)) <



Correctness

Theorem (Correctness) ' .
For any error allocation v € (0,1), DP-SPRT is («, §)-correct if:

V6 € ( ZP<—>C(H5))§5

Proof idea: Union bound decomposes error into SPRT error + privacy noise error

15



Sample Complexity Bounds

Theorem (Sample Complexity Upper Bound) . .
Assume correction condition holds. For error allocation v € (0,1) and i € {0,1}:

1
Eglr] <1+ (1-7)8+ ooy T V(0:61:6,7)
=% (‘ 2(61—0,)? )
1
EG‘\ [T] S 1 + (1 - V)O‘ + (TV(V907V91))4 + N(9'|7 907 «, 7)
1=eg (‘ 2(61—8, )2 )

where N(6,¢',5,7) = inf {n : LEQIEDN 1 5¢(n, (1 - 7)) < %Kﬁgjge‘)ﬂ}



Theorem (Lower Bound) A
Any e-DP test with Py, (d = 1) < o, Py, (d = 0) < 3 satisfies:

Rl(c, 1 — B)
Ego[7] = min (KL(vg,, ve,), € - TV(vg,, vp,))
Eqfr] > T

min (KL(vg,, v, ), € - TV(va,, vo,))

where RIl(x,y) = xlog(x/y) + (1 — x) log((1 — x)/(1 —y)) is binary relative entropy.



Laplace Implementation & Near-Optimality

Corollary (Laplace DP-SPRT Sample Complexity)
For DP-SPRT with Laplace noise (Y, ~ Lap(4/e), Z ~ Lap(2/¢)):

2log(1/(v8)) N 24(61 — 0o) log(¢(s)/(1 —7)B)

N(6o, 61, 8,7) <
(b0, 61, 8,7) KL(vg,, ve,) eKL(vg,, ve,)

+ 05-0(log(1/5))

Two Regimes:

- Statistics-dominated: ¢ large = complexity ~ % (like non-private SPRT)

(01=0o) log(1/5)

- Privacy-dominated: £ small = complexity ~ e



