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Sequential Hypothesis Testing

Setup: We observe samples X1, X2, . . . sequentially from distribution νθ

Goal: Test H0 : θ = θ0 vs H1 : θ = θ1 with as few samples as possible
Constraints: False positive probability ≤ α, false negative probability ≤ β

When do we need to test ?
• Clinical Trials
• A/B Testing
• Fraud Detection
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Sequential Probability Ratio Test

Setup: We observe samples X1, X2, . . . sequentially from distribution νθ

Goal: Test H0 : θ = θ0 vs H1 : θ = θ1 with as few samples as possible
Constraints: False positive probability ≤ α, false negative probability ≤ β

Sequential Probability Ratio Test (SPRT) (Wald, 1945):

X1 X2 X3 X4 X5 X6 X7
Samples from fθ

Stop

Test statistic: likelihood ratio
∏t
i=1

fθ1 (Xi)
fθ0 (Xi)

T1 −→ Accept H1

T0 −→ Accept H0
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Sequential Probability Ratio Test

Setup: We observe samples X1, X2, . . . sequentially from distribution νθ

Goal: Test H0 : θ = θ0 vs H1 : θ = θ1 with as few samples as possible
Constraints: False positive probability ≤ α, false negative probability ≤ β

SPRT for one dimensionnal exponential families: Stop at τ = min(τ0, τ1) with
decision d̂ = i if τ = τi where

τ0 = inf

{
n : X̄n ≤ µ0 +

KL(νθ0 , νθ1)− log(1/β)/n
θ1 − θ0

}
τ1 = inf

{
n : X̄n ≥ µ1 −

KL(νθ1 , νθ0)− log(1/α)/n
θ1 − θ0

}
.

KL(νθ0 , νθ1) is the KL divergence between the two distributions and X̄n is the
empirical mean of the samples up to time n.
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The Privacy Problem: A Medical Trial

Scenario: Testing if new drug works better than placebo

H0: Drug success rate = 30% (Same as placebo) vs H1: Drug success rate = 70%

Each patient outcome: Xi ∈ {0, 1} (failure/success)

Patients in clinical trial
0 1 1 0 1 1 ?

STOP
Accept H1

Question: What was patient 7’s outcome? Success (1) or Failure (0)?

The stopping decision reveals patient 7 had a SUCCESS!

Privacy violation: Patient 7’s medical outcome is leaked by our decision to stop
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Privacy in Sequential Decisions

Clinical Trial
• Testing new drug vs
placebo

• Stopping pattern
reveals:

• Treatment
effectiveness

• Patient responses

A/B Testing
• Users see different
versions

• When we conclude
reveals:

• User behavior
• Conversion rates

Fraud Detection
• Monitor transactions
• Alert timing reveals:

• Transaction
patterns

• Detection
methods

Core Problem: When we stop reveals what we observed
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Differential Privacy

Neighboring Datasets: Two datasets
D,D′ are neighboring if they differ by
exactly one record.

Differential Privacy (Dwork, Roth, et al.,
2014): A randomized mechanismM is
DP if for any neigboring datasets D and
D′ and for any events S:

ε-DP: log

(
P[M(D) ∈ S]
P[M(D′) ∈ S]

)
≤ ε

(α, ε)-Rényi DP: Dα(M(D)‖M(D′)) ≤ ε

where Dα is the Rényi divergence of
order α > 1.

Stopping Time Distributions

Deterministic Algorithm

τ
τD τD′

D
D′

Private Algorithm

τ

D
D′

Privacy adds randomness to mask the
stopping decision pattern
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Our Method: DP-SPRT

DP-SPRT Algorithm (blue = privacy additions to SPRT):

Input: Hypotheses θ0, θ1, error probabilities α, β, noise distributions DZ,DY , correction
function C(n, x), error allocation γ

1. Sample threshold noise Z ∼ DZ

2. For n = 1, 2, 3, . . . do
3. Sample query noise Yn ∼ DY

4. Compute noisy average X̄n = 1
n
∑n

i=1 Xi +
Yn
n

5. Compute noisy threshold T̂n0 = µ0 +
KL(νθ0 ,νθ1 )−log(1/(γβ))/n

θ1−θ0
−C(n, (1− γ)β)− Z

n

6. Compute noisy threshold T̂n1 = µ1 −
KL(νθ1 ,νθ0 )−log(1/(γα))/n

θ1−θ0
+C(n, (1− γ)α) + Z

n

7. If noisy average X̄n is below noisy threshold T̂n0 then Halt and accept H0

8. Else if noisy average X̄n is above noisy threshold T̂n1 then Halt and accept H1

Yn and Z are used for both conditions unlike when composing AboveThreshold 7



DP-SPRT: Privacy

Table: Comparison of DP-SPRT instantiations

Laplace Noise Gaussian Noise

Noise distributions Yn ∼ Lap(4/ε) Yn ∼ N (0, σ2Y)
Z ∼ Lap(2/ε) Z ∼ N (0, σ2Z)

Privacy guarantee ε-Differential Privacy (α, ε(α))-RDP

Correction function C(n, x) 6 log(nsζ(s)/x)
nε

√
2(σ2Y+σ2Z) log(nsζ(s)/2)

n

Correctness: DP-SPRT satisfies Pθ0(d̂ = 1) ≤ α and Pθ1(d̂ = 0) ≤ β when the
distribution DY is symmetric and the correction function C(n, x) satisfies:

∞∑
n=1

P
(
Yn
n

− Z
n
> C(n, x)

)
≤ x
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Near-Optimal Sample Complexity (DP-SPRT with Laplace noise)

Lower Bound (any ε-DP test):

E[τ ] ≥ log(1/β)
min(KL(νθ0 , νθ1), ε · TV(νθ0 , νθ1))

where TV is the total variation distance between two distributions.

Sample Complexity Upper Bound (Laplace Noise):

E[τ ] . max

(
log(1/β)
KL(νθ0 , νθ1)

,
(θ1 − θ0) log(1/β)
ε · KL(νθ0 , νθ1)

)
For Bernoulli distributions, we have

KL(νθ0 , νθ1)
θ1 − θ0

−→
θ1→θ0

TV(νθ0 , νθ1)

DP-SPRT with Laplace noise is near-optimal
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Experimental Results: Performance Comparison

Setup: Bernoulli(p0 = 0.3) vs Bernoulli(p1 = 0.7), α = β = 0.05, 1000 trials
Sample Complexity vs Privacy Level
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On average, DP-SPRT variants
outperform PrivSPRT (Zhang, Mei, and
Cummings, 2022) across privacy levels

Error Control Comparison
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All DP-SPRT variants guarantee error
control, while PrivSPRT can violate
error targets due to empirical tuning 10



Conclusion

Privacy:

• Real-world applications NEED privacy (regulations, competition, ethics)
• Sequential decisions leak sensitive information

Our Contributions:

1. Theoretically calibrated private sequential test with guaranteed error control
2. Near-optimal sample complexity matching lower bounds up to a constant in
some regimes

3. Practical implementation with no empirical tuning required, low variance in
stopping times, and subsampling amplification in high-privacy regimes

Thank you! Questions?
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Distribution of Stopping Time
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Privacy Guarantees

Theorem (Privacy)
Let A be the DP-SPRT algorithm and τ the (random) stopping time.

(i) ε-DP: If noise mechanisms DZ and DY satisfy εZ-DP (sensitivity 1) and εY-DP
(sensitivity 2), then DP-SPRT satisfies (εZ + εY)-DP.

(ii) (α, ε)-RDP: If mechanisms have RDP profiles εZ(α) and εY(α), then:

Dα(A(D)‖A(D′)) ≤ α− 1/2
α− 1

εZ(2α) + εY(α) +
log

(
2Ez∼DZ [E(τ,d̂)∼A(D′)[τ |z]

2]
)

2(α− 1)
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Correctness

Theorem (Correctness)
For any error allocation γ ∈ (0, 1), DP-SPRT is (α, β)-correct if:

∀δ ∈ (0, 1),
∞∑
n=1

P
(
Yn
n

− Z
n
> C (n, δ)

)
≤ δ

Proof idea: Union bound decomposes error into SPRT error + privacy noise error
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Sample Complexity Bounds

Theorem (Sample Complexity Upper Bound)
Assume correction condition holds. For error allocation γ ∈ (0, 1) and i ∈ {0, 1}:

Eθ0 [τ ] ≤ 1+ (1− γ)β +
1

1− exp
(
− (TV(νθ0 ,νθ1 ))

4

2(θ1−θ0)2

) + N(θ0, θ1, β, γ)

Eθ1 [τ ] ≤ 1+ (1− γ)α+
1

1− exp
(
− (TV(νθ0 ,νθ1 ))

4

2(θ1−θ0)2

) + N(θ1, θ0, α, γ)

where N(θ, θ′, δ, γ) = inf
{
n : log(1/(δγ))/n

|θ−θ′| + 2C(n, (1− γ)δ) ≤ 1
2
KL(νθ,νθ′ )
|θ−θ′|

}
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Lower Bound

Theorem (Lower Bound)
Any ε-DP test with Pθ0(d̂ = 1) ≤ α, Pθ1(d̂ = 0) ≤ β satisfies:

Eθ0 [τ ] ≥
kl(α, 1− β)

min (KL(νθ0 , νθ1), ε · TV(νθ0 , νθ1))

Eθ1 [τ ] ≥
kl(β, 1− α)

min (KL(νθ1 , νθ0), ε · TV(νθ0 , νθ1))

where kl(x, y) = x log(x/y) + (1− x) log((1− x)/(1− y)) is binary relative entropy.
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Laplace Implementation & Near-Optimality

Corollary (Laplace DP-SPRT Sample Complexity)
For DP-SPRT with Laplace noise (Yn ∼ Lap(4/ε), Z ∼ Lap(2/ε)):

N(θ0, θ1, β, γ) ≤
2 log(1/(γβ))
KL(νθ0 , νθ1)

+
24(θ1 − θ0) log(ζ(s)/(1− γ)β)

εKL(νθ0 , νθ1)
+ oβ→0(log(1/β))

Two Regimes:

• Statistics-dominated: ε large⇒ complexity ≈ log(1/β)
KL (like non-private SPRT)

• Privacy-dominated: ε small⇒ complexity ≈ (θ1−θ0) log(1/β)
ε·KL
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