DP-SPRT: Differentially Private Sequential Hypothesis Testing

Thomas Michel, Debabrota Basu, Emilie Kaufmann

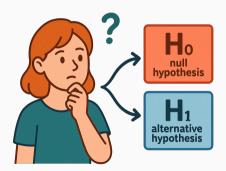
Scool Team, Inria Center of the University of Lille

Sequential Hypothesis Testing

Setup: We observe samples X_1, X_2, \ldots sequentially from distribution ν_{θ}

Goal: Test $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$ with as few samples as possible

Constraints: False positive probability $\leq \alpha$, false negative probability $\leq \beta$

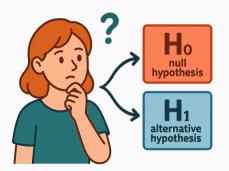


Sequential Hypothesis Testing

Setup: We observe samples X_1, X_2, \ldots sequentially from distribution ν_{θ}

Goal: Test $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$ with as few samples as possible

Constraints: False positive probability $\leq \alpha$, false negative probability $\leq \beta$



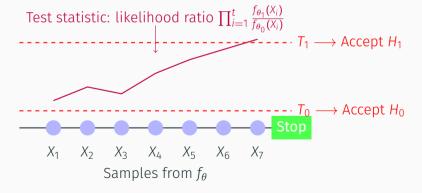
When do we need to test?

- · Clinical Trials
- A/B Testing
- Fraud Detection

Sequential Probability Ratio Test

Setup: We observe samples X_1, X_2, \ldots sequentially from distribution ν_{θ} **Goal**: Test $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$ with as few samples as possible **Constraints**: False positive probability $\leq \alpha$, false negative probability $\leq \beta$

Sequential Probability Ratio Test (SPRT) (Wald, 1945):



Sequential Probability Ratio Test

Setup: We observe samples X_1, X_2, \ldots sequentially from distribution ν_{θ} **Goal**: Test $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$ with as few samples as possible **Constraints**: False positive probability $\leq \alpha$, false negative probability $\leq \beta$

SPRT for one dimensionnal exponential families: Stop at $\tau = \min(\tau_0, \tau_1)$ with decision $\hat{d} = i$ if $\tau = \tau_i$ where

$$\tau_0 = \inf \left\{ n : \bar{X}_n \le \mu_0 + \frac{\mathsf{KL}(\nu_{\theta_0}, \nu_{\theta_1}) - \mathsf{log}(1/\beta)/n}{\theta_1 - \theta_0} \right\}$$
$$\tau_1 = \inf \left\{ n : \bar{X}_n \ge \mu_1 - \frac{\mathsf{KL}(\nu_{\theta_1}, \nu_{\theta_0}) - \mathsf{log}(1/\alpha)/n}{\theta_1 - \theta_0} \right\}.$$

 $\mathrm{KL}(\nu_{\theta_0}, \nu_{\theta_1})$ is the KL divergence between the two distributions and \bar{X}_n is the empirical mean of the samples up to time n.

The Privacy Problem: A Medical Trial

Scenario: Testing if new drug works better than placebo

 H_0 : Drug success rate = 30% (Same as placebo) vs H_1 : Drug success rate = 70%

Each patient outcome: $X_i \in \{0,1\}$ (failure/success)

4

The Privacy Problem: A Medical Trial

Scenario: Testing if new drug works better than placebo

 H_0 : Drug success rate = 30% (Same as placebo) vs H_1 : Drug success rate = 70%

Each patient outcome: $X_i \in \{0,1\}$ (failure/success)

Question: What was patient 7's outcome? Success (1) or Failure (0)?

The Privacy Problem: A Medical Trial

Scenario: Testing if new drug works better than placebo

 H_0 : Drug success rate = 30% (Same as placebo) vs H_1 : Drug success rate = 70%

Each patient outcome: $X_i \in \{0,1\}$ (failure/success)

Question: What was patient 7's outcome? Success (1) or Failure (0)?

The stopping decision reveals patient 7 had a SUCCESS!

Privacy violation: Patient 7's medical outcome is leaked by our decision to stop

Privacy in Sequential Decisions

Clinical Trial

- Testing new drug vs placebo
- Stopping pattern reveals:
 - Treatment effectiveness
 - Patient responses

A/B Testing

- Users see different versions
- When we conclude reveals:
 - User behavior
 - Conversion rates

Fraud Detection

- Monitor transactions
- Alert timing reveals:
 - Transaction patterns
 - Detection methods

Core Problem: When we stop reveals what we observed

Differential Privacy

Neighboring Datasets: Two datasets D, D' are neighboring if they differ by exactly one record.

Differential Privacy (Dwork, Roth, et al., 2014): A randomized mechanism \mathcal{M} is DP if for any neigboring datasets D and D' and for any events S:

$$\begin{array}{ll} \varepsilon\text{-DP:} & \log\left(\frac{\mathbb{P}[\mathcal{M}(D)\in S]}{\mathbb{P}[\mathcal{M}(D')\in S]}\right)\leq \varepsilon\\ \\ (\alpha,\varepsilon)\text{-R\'enyi DP:} & D_{\alpha}(\mathcal{M}(D)\|\mathcal{M}(D'))\leq \varepsilon \end{array}$$

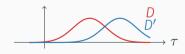
where D_{α} is the Rényi divergence of order $\alpha > 1$.

Stopping Time Distributions

Deterministic Algorithm



Private Algorithm



Privacy adds randomness to mask the stopping decision pattern

Our Method: DP-SPRT

DP-SPRT Algorithm (blue = privacy additions to SPRT):

Input: Hypotheses θ_0, θ_1 , error probabilities α, β , noise distributions $\mathcal{D}_Z, \mathcal{D}_Y$, correction function C(n, x), error allocation γ

- 1. Sample threshold noise $Z \sim \mathcal{D}_Z$
- 2. For $n = 1, 2, 3, \dots$ do
- 3. Sample query noise $Y_n \sim \mathcal{D}_Y$
- 4. Compute noisy average $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i + \frac{Y_n}{n}$
- 5. Compute noisy threshold $\hat{T}_0^n = \mu_0 + \frac{\text{KL}(\nu_{\theta_0}, \nu_{\theta_1}) \log(1/(\gamma\beta))/n}{\theta_1 \theta_0} C(n, (1-\gamma)\beta) \frac{Z}{n}$
- 6. Compute noisy threshold $\hat{T}_1^n = \mu_1 \frac{\text{KL}(\nu_{\theta_1}, \nu_{\theta_0}) \log(1/(\gamma \alpha))/n}{\theta_1 \theta_0} + C(n, (1 \gamma)\alpha) + \frac{Z}{n}$
- 7. If noisy average \bar{X}_n is below noisy threshold \hat{T}_0^n then Halt and accept \mathcal{H}_0
- 8. Else if noisy average \bar{X}_n is above noisy threshold \hat{T}_1^n then Halt and accept \mathcal{H}_1

 Y_n and Z are used for both conditions unlike when composing AboveThreshold

DP-SPRT: Privacy

Table: Comparison of DP-SPRT instantiations

	Laplace Noise	Gaussian Noise
Noise distributions	$Y_n \sim \text{Lap}(4/arepsilon)$ $Z \sim \text{Lap}(2/arepsilon)$	$Y_n \sim \mathcal{N}(0, \sigma_Y^2)$ $Z \sim \mathcal{N}(0, \sigma_Z^2)$
Privacy guarantee	arepsilon-Differential Privacy	$(\alpha, \varepsilon(\alpha))$ -RDP
Correction function $C(n,x)$	$\frac{6\log(n^{s}\zeta(s)/x)}{n\varepsilon}$	$\frac{\sqrt{2(\sigma_Y^2 + \sigma_Z^2)\log(n^s\zeta(s)/2)}}{n}$

Correctness: DP-SPRT satisfies $\mathbb{P}_{\theta_0}(\hat{d}=1) \leq \alpha$ and $\mathbb{P}_{\theta_1}(\hat{d}=0) \leq \beta$ when the distribution \mathcal{D}_Y is symmetric and the correction function C(n,x) satisfies:

$$\sum_{n=1}^{\infty} \mathbb{P}\left(\frac{Y_n}{n} - \frac{Z}{n} > C(n, x)\right) \le x$$

Near-Optimal Sample Complexity (DP-SPRT with Laplace noise)

Lower Bound (any ε -DP test):

$$\mathbb{E}[\tau] \geq \frac{\log(1/\beta)}{\min(\mathsf{KL}(\nu_{\theta_0},\nu_{\theta_1}),\varepsilon\cdot\mathsf{TV}(\nu_{\theta_0},\nu_{\theta_1}))}$$

where TV is the total variation distance between two distributions.

Sample Complexity Upper Bound (Laplace Noise):

$$\mathbb{E}[\tau] \lesssim \max\left(\frac{\log(1/\beta)}{\mathsf{KL}(\nu_{\theta_0},\nu_{\theta_1})}, \frac{(\theta_1-\theta_0)\log(1/\beta)}{\varepsilon \cdot \mathsf{KL}(\nu_{\theta_0},\nu_{\theta_1})}\right)$$

For Bernoulli distributions, we have

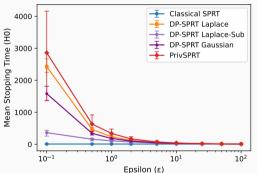
$$\frac{\mathsf{KL}(\nu_{\theta_0}, \nu_{\theta_1})}{\theta_1 - \theta_0} \xrightarrow[\theta_1 \to \theta_0]{\mathsf{TV}(\nu_{\theta_0}, \nu_{\theta_1})}$$

DP-SPRT with Laplace noise is near-optimal

Experimental Results: Performance Comparison

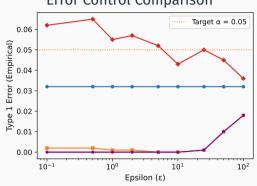
Setup: Bernoulli($p_0 = 0.3$) vs Bernoulli($p_1 = 0.7$), $\alpha = \beta = 0.05$, 1000 trials

Sample Complexity vs Privacy Level



On average, **DP-SPRT variants outperform** PrivSPRT (Zhang, Mei, and
Cummings, 2022) across privacy levels

Error Control Comparison



All DP-SPRT variants guarantee error control, while PrivSPRT can violate error targets due to empirical tuning

Conclusion

Privacy:

- · Real-world applications **NEED** privacy (regulations, competition, ethics)
- · Sequential decisions leak sensitive information

Conclusion

Privacy:

- · Real-world applications **NEED** privacy (regulations, competition, ethics)
- · Sequential decisions leak sensitive information

Our Contributions:

- 1. Theoretically calibrated private sequential test with guaranteed error control
- 2. **Near-optimal sample complexity** matching lower bounds up to a constant in some regimes
- 3. Practical implementation with no empirical tuning required, low variance in stopping times, and subsampling amplification in high-privacy regimes

Conclusion

Privacy:

- · Real-world applications **NEED** privacy (regulations, competition, ethics)
- · Sequential decisions leak sensitive information

Our Contributions:

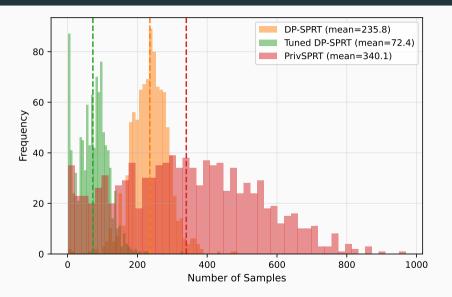
- 1. Theoretically calibrated private sequential test with guaranteed error control
- 2. **Near-optimal sample complexity** matching lower bounds up to a constant in some regimes
- 3. **Practical implementation** with **no empirical tuning** required, **low variance** in stopping times, and **subsampling amplification** in high-privacy regimes

Thank you! Questions?

References

- Dwork, Cynthia, Aaron Roth, et al. (2014). "The algorithmic foundations of differential privacy". In: Foundations and Trends® in Theoretical Computer Science 9.3–4, pp. 211–407.
- Wald, A. (1945). "Sequential Tests of Statistical Hypotheses". In: Annals of Mathematical Statistics 16(2), pp. 117–186.
- Zhang, Wanrong, Yajun Mei, and Rachel Cummings (2022). "Private Sequential Hypothesis Testing for Statisticians: Privacy, Error Rates, and Sample Size". In: AISTATS.

Distribution of Stopping Time



Privacy Guarantees

Theorem (Privacy)

Let ${\mathcal A}$ be the DP-SPRT algorithm and au the (random) stopping time.

- (i) ε -DP: If noise mechanisms \mathcal{D}_Z and \mathcal{D}_Y satisfy ε_Z -DP (sensitivity 1) and ε_Y -DP (sensitivity 2), then DP-SPRT satisfies ($\varepsilon_Z + \varepsilon_Y$)-DP.
- (ii) (α, ε) -RDP: If mechanisms have RDP profiles $\varepsilon_Z(\alpha)$ and $\varepsilon_Y(\alpha)$, then:

$$\mathbb{D}_{\alpha}(\mathcal{A}(D)||\mathcal{A}(D')) \leq \frac{\alpha - 1/2}{\alpha - 1} \varepsilon_{Z}(2\alpha) + \varepsilon_{Y}(\alpha) + \frac{\log\left(2\mathbb{E}_{Z \sim \mathcal{D}_{Z}}[\mathbb{E}_{(\tau, \hat{d}) \sim \mathcal{A}(D')}[\tau|Z]^{2}]\right)}{2(\alpha - 1)}$$

Correctness

Theorem (Correctness)

For any error allocation $\gamma \in (0,1)$, DP-SPRT is (α, β) -correct if:

$$\forall \delta \in (0,1), \quad \sum_{n=1}^{\infty} \mathbb{P}\left(\frac{Y_n}{n} - \frac{Z}{n} > C(n,\delta)\right) \leq \delta$$

Proof idea: Union bound decomposes error into SPRT error + privacy noise error

Sample Complexity Bounds

Theorem (Sample Complexity Upper Bound)

Assume correction condition holds. For error allocation $\gamma \in (0,1)$ and $i \in \{0,1\}$:

$$\begin{split} \mathbb{E}_{\theta_0}[\tau] &\leq 1 + (1 - \gamma)\beta + \frac{1}{1 - \exp\left(-\frac{(TV(\nu_{\theta_0}, \nu_{\theta_1}))^4}{2(\theta_1 - \theta_0)^2}\right)} + N(\theta_0, \theta_1, \beta, \gamma) \\ \mathbb{E}_{\theta_1}[\tau] &\leq 1 + (1 - \gamma)\alpha + \frac{1}{1 - \exp\left(-\frac{(TV(\nu_{\theta_0}, \nu_{\theta_1}))^4}{2(\theta_1 - \theta_0)^2}\right)} + N(\theta_1, \theta_0, \alpha, \gamma) \end{split}$$

where
$$N(\theta, \theta', \delta, \gamma) = \inf \left\{ n : \frac{\log(1/(\delta\gamma))/n}{|\theta - \theta'|} + 2C(n, (1 - \gamma)\delta) \le \frac{1}{2} \frac{KL(\nu_{\theta}, \nu_{\theta'})}{|\theta - \theta'|} \right\}$$

Lower Bound

Theorem (Lower Bound)

Any
$$\varepsilon$$
-DP test with $\mathbb{P}_{\theta_0}(\hat{d}=1) \leq \alpha$, $\mathbb{P}_{\theta_1}(\hat{d}=0) \leq \beta$ satisfies:

$$\mathbb{E}_{\theta_0}[\tau] \ge \frac{kl(\alpha, 1 - \beta)}{\min\left(KL(\nu_{\theta_0}, \nu_{\theta_1}), \varepsilon \cdot TV(\nu_{\theta_0}, \nu_{\theta_1})\right)}$$

$$\mathbb{E}_{\theta_1}[\tau] \ge \frac{kl(\beta, 1 - \alpha)}{\min\left(KL(\nu_{\theta_1}, \nu_{\theta_2}), \varepsilon \cdot TV(\nu_{\theta_2}, \nu_{\theta_1})\right)}$$

where $kl(x,y) = x \log(x/y) + (1-x) \log((1-x)/(1-y))$ is binary relative entropy.

Laplace Implementation & Near-Optimality

Corollary (Laplace DP-SPRT Sample Complexity)

For DP-SPRT with Laplace noise $(Y_n \sim \text{Lap}(4/\varepsilon), Z \sim \text{Lap}(2/\varepsilon))$:

$$N(\theta_0, \theta_1, \beta, \gamma) \leq \frac{2\log(1/(\gamma\beta))}{KL(\nu_{\theta_0}, \nu_{\theta_1})} + \frac{24(\theta_1 - \theta_0)\log(\zeta(s)/(1 - \gamma)\beta)}{\varepsilon KL(\nu_{\theta_0}, \nu_{\theta_1})} + o_{\beta \to 0}(\log(1/\beta))$$

Two Regimes:

- Statistics-dominated: ε large \Rightarrow complexity $\approx \frac{\log(1/\beta)}{KL}$ (like non-private SPRT)
- Privacy-dominated: ε small \Rightarrow complexity $\approx \frac{(\theta_1 \theta_0) \log(1/\beta)}{\varepsilon \cdot \text{KL}}$