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Context



Context

• Evaluate the impacts of different changes on ecosystems and
ecosystem services
→ the benefits humans obtain from ecosystems (e.g. : crop

pollination, oxygen production by plants, carbon sequestration, ...)
• To this aim, some models for ecosystem services have been developed
• But they are often complex (black-box models, time-consuming, ...) and
rarely calibrated on experimental data (rely on expert judgment,
literature data, ...)
• Objective: propose a general methodology to calibrate these models
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Model and data



Pollination model: Central Place Foragers (CPF) model

Pollination model for bumble bees based on central foraging theory:

Pollination
model

Visitation
rates

Nesting/floral
quality inputs

Parameters

Observed
abundances

Observed floral
coverages

Landuse
maps

3/20



Model inputs

For each sampling site i, each year j and each period k:

A landscape map
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Data

• Two studies on pollinator abundances in southern Sweden
• Data collected in four different years, several times a year (covering 3
different periods of bumblebees life cycle)→ 790 data points
• Number of bees flying or foraging in a given transect for a given period
of time was recorded
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Statistical model - Bayesian formulation

• yijk: observed nb of bees on site i, year j and period k.

• Likelihood 








yijk | λijk, θ ∼ P(ci · λijk)
logλijk = logνi(θ,Mjk) + βk + ϵijk

ϵijk ∼ N (0, σ2).

• ci a known scaling parameter,
• λijk the real intensity of the visitation rates,
• νi(θ,Mijk) is the predicted visitation rates,
• βk a period-specific parameter

• Complete vector of parameters ψ = (τ0, f0,a,b, β1, . . . , βK , σ2)
• Priors

τ0 ∼ LN [0,1000](log(1000), 1) f0 ∼ LN (log(0.1), 1)

a ∼ U([100, 1000]) b ∼ U([100, 1000])

βk ∼ N (0, 100), k = 1, . . . ,K

σ2 ∼ IG(1, 1)
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Bayesian estimation

• In a Bayesian context, we are now interested in the posterior
distribution of the parameters:

π(ψ | y) ∝ f (y | ψ)
︸ ︷︷ ︸

likelihood

p(ψ)
︸︷︷︸

prior

• But here the likelihood is intractable:

f (y | ψ) =
∫

f (y, λ | ψ)dλ =

∫

f (y | λ,ψ)f (λ | ψ)dλ

=
∏

ijk

1
p
2πσyijk!

∫ +∞

0
e−λλyijk−1 exp
�

−
(logλ − logνi(θ,Mijk)− βk)2

2σ2

�

dλ

• We rely on approximate Bayesian computation (ABC)
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Approximate Bayesian Computation



Approximation Bayesian computation (ABC)

• Introduced at the end of the 1990 in the area of population genetics

ABC rejection sampling (Tavaré et al. 1997)
Input: a threshold ϵ and a distance d on the set of observations

For m = 1, . . . ,M:

1. draw a sample ψ(m) from the prior distribution

2. generate a set of observations y(m) using p(y | ψ)

3. if d(yobs, y(m)) ≤ ϵ, keep ψ(m)

4. Output: a sample of size Mϵ with all the accepted sets of parameters
ψ(m)

• Curse of dimensionality: increase M or ϵ to get a reasonable value Mϵ
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Approximate Bayesian computation (ABC)

Several extensions to the original algorithm have been proposed:

• introduction of summary statistics s(·) of dimension q < n→ samples
from π(ψ | sobs) instead of the posterior π(ψ | yobs) (Blum et al. 2013)

• replace crude rejection by kernel smoothing→ each sample is used,
with a weight wm = K(d(yobs, y(m)))

• produce adjusted samples using the relationship between parameters
and summary statistics (Blum et François, 2010)

• approaches focusing on the estimation of one-dimensional quantities
from the ABC posterior (Raynal et al. 2018)
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Summary of our approach

Initial abcTable

Parameters Summary statistics

ψ
(1)
1 ψ

(1)
2 . . . ψ

(1)
p s

(1)
1 s

(1)
2 . . . s

(1)
q

ψ
(2)
1 ψ

(2)
2 . . . ψ

(2)
p s

(2)
1 s

(2)
2 . . . s

(2)
q

...

ψ
(M)
1 ψ

(M)
2 . . . ψ

(M)
p s

(M)
1 s

(M)
2 . . . s

(M)
q

define weights for each sample

wm = 3
4

(
1 − (s(m)−sobs)2

qε

)
1(s(m)−sobs)2≤qε

Regression adjustment techniques (section 2.3.4)

1. regression of parameters on summary statistics

ψ
(m)
i = mi

(
s(m)

)
+ σi

(
s(m)

)
εim

2. adjusted samples from estimated regression model

ψ
∗(m)
i = m̂i(sobs) + (ψ

(m)
i − m̂i(s

(m))) σ̂i(sobs)

σ̂i(s(m))

Machine learning approaches (section 2.3.5)

1. quantile regression using random forest

2. quantile regression using boosting methods

Output

Scalar predictions from ABC posterior:

posterior mean and median, 95% CI

Output

ψ
∗(m)
i , i = 1, ..., p,m = 1, ...,M

adjusted ABC posterior samples
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Methods based on regression adjustment

• Main idea: build a relationship between the parameter values and the
summary statistics values, e.g. via regression techniques.

ψ
(m)

i =mi(s(m)) + σi(s(m))ϵim, i = 1, . . . ,p

Then, samples from πABC(ψ | sobs) are obtained via:

ψ
∗(m)

i = m̂i(sobs) + σ̂i(sobs)

�

ψ
(m)

i − m̂(s(m))
�

σ̂i(s(m))

• several choices for mi and σi to handle nonlinearity and
heteroscedasticity

11/20



Methods based on regression adjustment

We compared:

Regression adjustment methods

• local linear heteroscedastic model (Beaumont et al. 2002) [LocLH]

• local nonlinear heteroscedastic model (Blum and François 2010) [LocNLH]
• adaptive nonlinear heteroscedastic model (Blum and François 2010) [ANLH]
→ two-step procedure:

1. perform a LocNLH regression and estimate the distribution
support D of the adjusted values

2. perform a second LocNLH regression using parameters values
samples from pD, the conditional prior of the parameters given
that they fall in D

• nonlinear homoscedastic regression via random forest (Bi et al. 2022) [RFA]

With these methods, we get as outputs a sample of the ABC posterior
distribution.
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Methods based on quantile regression

• Sometimes we are only interested in some quantities from the
posterior distribution (e.g. quantiles, mean, ...)

→ what if we try to approximate these quantities using ABC instead of the
whole posterior ?

Quantile regression methods

• Quantile regression using random forests (Raynal et al. 2016) [qRF]
• Quantile regression using gradient boosting [qGBM]

With these methods, we get as outputs the mean, the median, and the 2.5%
and 97.5% quantiles of the ABC posterior distribution.
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Choice of the summary statistics

We used the interquartile range and the number of 0’s:

1. per site, per period and per year, all habitat types combined

2. per habitat type, per period and per year, all sites combined

• aggregation across habitats accounts for differences in population sizes
between landscapes,
• habitat-specific summaries captures joint effect of population size and
relative attractiveness of the habitats

→ first reduction of the dimension, from 790 data points to 404 summary
statistics
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Results



Simulation study

• M = 100 000 parameter samples from the prior→ M datasets
• 100 datasets were randomly chosen as reference datasets
• ABC posterior samples and quantiles were estimated on these 100
datasets using the remaining 999 900 datasets.
• Two values for the threshold qϵ in the weighting kernel (2.5% or 5% of
the data)
• Comparison of the relative absolute error between posterior median
and true value, empirical coverage of the CI
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Results – RAE
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Results – MAP estimate

Extracted results for parameters a and β1:
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Results – MAP estimate

Extracted results for parameters a and β1:
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Results on real data
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Results – predictions
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Conclusion and perspectives



Conclusion and perspectives

Conclusion

• Posterior distributions were narrower than the prior for most
parameters
• But, some parameters were difficult to estimate (CPF parameters vs.
observation parameters)→ identifiability issues?
• Predicted values tend to be overdispersed
• Results are conditional on the floral and nesting maps

Perspectives

• Use the estimated ABC posterior distribution to tune likelihood-free
MCMC algorithms (initialization of the chain, choice of the proposal
distribution) (e.g. Wegmann 2009)
• Evaluate the influence of the input maps
• Perform model comparison
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