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Context



® Evaluate the impacts of different changes on ecosystems and
ecosystem services

— the benefits humans obtain from ecosystems (e.g. : crop
pollination, oxygen production by plants, carbon sequestration, ...)

® To this aim, some models for ecosystem services have been developed

e But they are often complex (black-box models, time-consuming, ...) and
rarely calibrated on experimental data (rely on expert judgment,
literature data, ...)

® Objective: propose a general methodology to calibrate these models
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Model and data



Pollination model: Central Place Foragers (CPF) model

Pollination model for bumble bees based on central foraging theory:
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For each sampling site i, each year j and each period k:
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® Two studies on pollinator abundances in southern Sweden
¢ Data collected in four different years, several times a year (covering 3
different periods of bumblebees life cycle) — 790 data points

® Number of bees flying or foraging in a given transect for a given period
of time was recorded
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Statistical model - Bayesian formulation

® yijr: observed nb of bees on site i, year j and period k.
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Statistical model - Bayesian formulation

® yijr: observed nb of bees on site i, year j and period k.

[ ] leelIhOOd y”k | )\I]k' 6 e~ P(C‘ 'Aijk)

logAjje = log Vi(6, Mjk) + Bk + Eijk
gjr  ~N(0, 0?).
+ ¢j a known scaling parameter,
* Ajjk the real intensity of the visitation rates,
* vi(8, Mij) is the predicted visitation rates,
+ Bk a period-specific parameter

® Complete vector of parameters ¢ = (7o, fo, a, b, B1, . - ., Bk, 02)
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* vi(8, Mij) is the predicted visitation rates,
+ Bk a period-specific parameter

® Complete vector of parameters ¢ = (7o, fo, a, b, B1, . - ., Bk, 02)

® Priors
To ~ £N[o,1ooo](|0g(1000), ) fo~ ﬂNUOg(O.'I), 1)

a ~ U([100,1000]) b ~ 1([100, 1000])
Br ~N(0,100), k=1,...,K
0% ~ZG(1,1)
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Bayesian estimation

® |n a Bayesian context, we are now interested in the posterior
distribution of the parameters:

(@ ly) < flyly¢) p(y)
———— ——
likelihood prior

® But here the likelihood is intractable:
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® We rely on approximate Bayesian computation (ABC)
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Approximate Bayesian Computation



Approximation Bayesian computation (ABC)

® Introduced at the end of the 1990 in the area of population genetics
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Approximation Bayesian computation (ABC)

® Introduced at the end of the 1990 in the area of population genetics

ABC rejection sampling (Tavaré et al. 1997)
Input: a threshold € and a distance d on the set of observations

Form=1,..., M:

1. draw a sample ¢(™ from the prior distribution

2. generate a set of observations y(™ using p(y | ¢)
3. if d(yobs, y'™) < €, keep ¢(™
4,

Output: a sample of size Mg with all the accepted sets of parameters
Pm)
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Approximation Bayesian computation (ABC)

® Introduced at the end of the 1990 in the area of population genetics
ABC rejection sampling (Tavaré et al. 1997)
Input: a threshold € and a distance d on the set of observations
Form=1,..., M:

1. draw a sample ¢(™ from the prior distribution

2. generate a set of observations y(™ using p(y | ¢)
3. if d(yobs, ¥(™) < €, keep (™)
4,

Output: a sample of size Mg with all the accepted sets of parameters
Pm)

® Curse of dimensionality: increase M or € to get a reasonable value Mg
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Approximate Bayesian computation (ABC)

Several extensions to the original algorithm have been proposed:

® introduction of summary statistics s(-) of dimension g < n — samples
from (Y | Sobs) instead of the posterior (Y | Yobs) (Blum et al. 2013)

® replace crude rejection by kernel smoothing — each sample is used,
with a weight wm = K(d(yobs, y(™))

® produce adjusted samples using the relationship between parameters
and summary statistics (Blum et Francois, 2010)

® approaches focusing on the estimation of one-dimensional quantities
from the ABC posterior (Raynal et al. 2018)
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Summary of our approach

Initial abcTable

Summary statistics
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Regression adjustment techniques (section 2.3.4)

1. regression of parameters on summary statistics
1/’1("” =m (S(m)) + o (S('m)) Eim

2. adjusted samples from estimated regression model

U = ria(soba) + (94 — ri(s™)) Zoe
Output
P; iz yi=1,.,p,m=1,.., M

ad]usted ABC posterior samples

Y

Machine learning approaches (section 2.3.5)
1. quantile regression using random forest

2. quantile regression using boosting methods

Y
Output
Scalar predictions from ABC posterior:
posterior mean and median, 95% CI
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Methods based on regression adjustment

® Main idea: build a relationship between the parameter values and the
summary statistics values, e.g. via regression techniques.

¢:f"’) =mi(s™) + g;(s™)eim, i=1,...,p
Then, samples from Tapc (Y | Sobs) are obtained via:

(4™ = (s(m))

6,-(5("'))

‘//,'*(m) = Mi(Sobs) + Gi(Sobs)

® several choices for mj and o; to handle nonlinearity and
heteroscedasticity
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Methods based on regression adjustment

We compared:

Regression adjustment methods

® |ocal linear heteroscedastic model (Beaumont et al. 2002) [LocLH]

With these methods, we get as outputs a sample of the ABC posterior
distribution.
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We compared:

Regression adjustment methods

® (ocal linear heteroscedastic model (Beaumont et al. 2002) [LocLH]

® |ocal nonlinear heteroscedastic model (Blum and Francois 2010) [LOcNLH]

® adaptive nonlinear heteroscedastic model (Blum and Francois 2010) [ANLH]
— two-step procedure:

1. perform a LocNLH regression and estimate the distribution
support D of the adjusted values

2. perform a second LocNLH regression using parameters values
samples from pp, the conditional prior of the parameters given
that they fall in D

® nonlinear homoscedastic regression via random forest (i et al. 2022) [RFA]

With these methods, we get as outputs a sample of the ABC posterior
distribution.
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Methods based on quantile regression

® Sometimes we are only interested in some quantities from the
posterior distribution (e.g. quantiles, mean, ...)
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Methods based on quantile regression

® Sometimes we are only interested in some quantities from the
posterior distribution (e.g. quantiles, mean, ...)

— what if we try to approximate these quantities using ABC instead of the
whole posterior ?

Quantile regression methods

® Quantile regression using random forests (Raynal et al. 2016) [qRF]
® Quantile regression using gradient boosting [qGBM]

With these methods, we get as outputs the mean, the median, and the 2.5%
and 97.5% quantiles of the ABC posterior distribution.
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Choice of the summary statistics

We used the interquartile range and the number of 0's:

1. per site, per period and per year, all habitat types combined

2. per habitat type, per period and per year, all sites combined

® aggregation across habitats accounts for differences in population sizes
between landscapes,

® habitat-specific summaries captures joint effect of population size and
relative attractiveness of the habitats

— first reduction of the dimension, from 790 data points to 404 summary
statistics
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Results




Simulation study

® M =100 000 parameter samples from the prior — M datasets
® 100 datasets were randomly chosen as reference datasets

® ABC posterior samples and quantiles were estimated on these 100
datasets using the remaining 999 900 datasets.

® Two values for the threshold ge in the weighting kernel (2.5% or 5% of
the data)

® Comparison of the relative absolute error between posterior median
and true value, empirical coverage of the Cl
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Results - MAP estimate

Extracted results for parameters a and (1:
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Results - MAP estimate

Extracted results for parameters a and (1:
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Results - predictions
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Conclusion and perspectives




Conclusion and perspectives

Conclusion

® Posterior distributions were narrower than the prior for most
parameters

® But, some parameters were difficult to estimate (CPF parameters vs.
observation parameters) — identifiability issues?

® Predicted values tend to be overdispersed
® Results are conditional on the floral and nesting maps

Perspectives

® Use the estimated ABC posterior distribution to tune likelihood-free
MCMC algorithms (initialization of the chain, choice of the proposal
distribution) (e.g. Wegmann 2009)

® Evaluate the influence of the input maps

¢ Perform model comparison
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