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Hidden Markov Model

Markov process : η1 η2 η3 · · · ηT

Observations : X1 X2 X3 · · · XT

Figure: A Hidden Markov Model.

Latent (unobserved) variables (ηk)k form a Markov chain.

Observations (Xk)k are independent conditionnally to (ηk)k .
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A simple Hidden Markov Model

One observes X1, . . . , Xn ∈ Rd such that

Xi = θηi + ξi

where
- ξ1, . . . , ξn are standard Gaussian random vectors
- (ηi)1≤i≤n is a Markov chain with two states −1 and 1

- The transition matrix ensures Q =
(

1 − δ δ
δ 1 − δ

)
Here, δ is allowed to depend on n and to be very small.
Some natural questions arise in this setting:

- Estimation of θ

- Estimation of δ

- Clustering
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The problem of estimation

The problem of estimating θ has already been studied recently in
Karagulyan and Ndaoud 2024. Let

M(n, d , δ, t) = inf
θ̂(X1:n)

sup
∥θ∥=t

Eθ

[
min

{
∥θ̂(X1:n) − θ∥, ∥θ̂(X1:n) + θ∥

}]

It was shown in Karagulyan and Ndaoud 2024 that when d ≤ δn,

M(n, d , δ, t) ≍


t if t ≤

(
δd
n

)1/4

1
t

√
δd
n if

(
δd
n

)1/4
≤ t ≤

√
δ√

d
n if

√
δ ≤ t
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The problem of clustering
Let η = (ηi)1≤i≤n and ℓ (η̂, η) = minν∈{−1,1} |η̂ + νη| where |.| is the
Hamming distance. We define the risk of a clustering procedure η̂ as

R (θ, δ, η̂) = E [ℓ (η̂(X1:n), η)]

and the Bayes risk of clustering as

inf̂
η

R (θ, δ, η̂)

This risk was studied in Gassiat, Kaddouri and Naulet 2023 in the strongly
mixing setting. It was shown that for α̃n = C

δ5√
n

δ2(1 − α̃n)
2(1 − δ) e−2∥θ∥2 ≤ inf̂

η
R (θ, δ, η̂) ≤ (1 − δ)e− ∥θ∥2

2

When δ is allowed to be very small, this fails to provide a precise
understanding of the interplay between the strength of the signal and the
Markovian dependence measured by δ.
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Two frameworks

We study the risk of clustering observations in two frameworks:
Offline setting: All observations are used in the clustering
procedures. Clustering rules are of the form:
η̂(Y1:n) = (η̂i(Y1:n))1≤i≤n.
The Bayes risk of online clustering will be denoted inf η̂On R (θ, δ, η̂) .

Online setting: Observations are clustered sequentially, with access
to the past observations only at each step. Clustering rules are of the
form: η̂(Y1:n) = (η̂i(Y1:i))1≤i≤n.
The Bayes risk of offline clustering will be denoted inf η̂ R (θ, δ, η̂) .
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Online framework

Theorem
When δ ≥ 1

n ,

inf
η̂On

R (θ, δ, η̂) ≤



1
2 if ∥θ∥2 ≤ 2δ
4δ

∥θ∥2

(
log
(

∥θ∥2

2δ

)
+ 1

)
if 2δ < ∥θ∥2 ≤ log

(
1
δ

)
e− ∥θ∥2

2 if ∥θ∥2 > log
(

1
δ

)
This upper-bound is reached by this online clustering procedure:

- For i ∈ J1, kK:
η̂i(X1:n) = sign (⟨Xi , θ⟩)

- For i > k:

η̂i(X1:n) = sign

〈1
k

i∑
j=i−k+1

Xj , θ

〉
with k =

⌈
2

∥θ∥2 log
(

∥θ∥2

2δ

)⌉
.
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Online framework

Proposition
When δ ≳ 1

n ,

inf
η̂On

R (θ, δ, η̂) ≳


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δ

∥θ∥2

(
log
(
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Behavior of the Bayes risk of online clustering

1

1

e−∥θ∥2

∥θ∥2

inf η̂On R (θ, δ, η̂)

Behavior of the Bayes risk of online clustering in the strongly mixing regime.
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Behavior of the Bayes risk of online clustering

δ log
(1

δ

)

δ

1

δ
∥θ∥2 log

(
∥θ∥2

δ

)

e−∥θ∥2

∥θ∥2
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Offline framework

Proposition

inf̂
η

R (θ, δ, η̂) ≲
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Offline clustering procedure

Consider η̃a−1 and η̃a+1 are the online estimators defined by:

η̃a−1(Xa−k:a−1) = ⟨ 1
k

a−1∑
j=a−k

Xj , θ⟩, η̃a+1(Xa+1:a+k) = ⟨ 1
k

a+k∑
j=a+1

Xj , θ⟩

where k =
⌈

2
∥θ∥2 log

(
∥θ∥2

2δ

)⌉
.

Consider the clustering procedure η̂ such that for a ∈ J1, nK:

η̂a(η̃a−1, Xa−k:a+k , η̃a+1) ={
η̃a−1 if η̃a−1 = η̃a+1, ∥θ∥2 < log

(
1
δ

)
and a ∈ Jk + 1, n − kK

sign (⟨Xa, θ⟩) else.
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Lower-bound

Proposition
When δ ≳ 1

n ,

inf̂
η

R (θ, δ, η̂) ≳



1 if ∥θ∥2 ≤ 2δ
δ

∥θ∥2 if 2δ < ∥θ∥2 ≤ 1
δe−2∥θ∥2 if ∥θ∥2 > 1
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Behavior of the Bayes risk of offline clustering

δ 1

δ

1
δ

∥θ∥2

δe−∥θ∥2 ∥θ∥2

inf η̂ R (θ, δ, η̂)

Figure: Behavior of the Bayes risk of offline clustering in the slowly mixing regime
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Adaptation

WLOG, assume n = kℓ. For each bucket i ∈ J1, ℓK, consider the sample
mean of k observations inside the i-th bucket

X̃i = 1
k

ki∑
j=k(i−1)+1

Xj

Note that
X̃i = θη̄i + ξi√

k
where η̄i = 1

k
∑ki

j=k(i−1)+1 ηj and ξi is a standard Gaussian vector.

We stack the ℓ terms in an Rd×ℓ matrix form as follows:

X̃ = θη̄⊤ + ξ√
k

We then consider the Gram matrix of observations X̃ X̃⊤.
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Adaptation
It is easy to see that:

E
[1

ℓ
X̃ X̃⊤

]
= E

[
∥η̄∥2]
ℓ

θθ⊤ + 1
k Id

Since our goal is adaptation up to multiplicative constants, it is natural to
consider the following estimator of ∥θ∥:

∥θ̂(ℓ)∥ =
∥∥∥∥1

ℓ
X̃ X̃⊤ − 1

k Id

∥∥∥∥1/2

op

Proposition
There exists c > 0 and C > 0 such that for ε > 0 and
ℓ ≥ n∥θ∥2 ∨ d

ε2 ∨ 2
3εnδ,

P
(∣∣∣∥θ̂(ℓ)∥2 − ∥θ∥2

∣∣∣ ≥ Cε
ℓ

n

)
≤ e− cε2ℓ

2 .
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Adaptation

Define now Iℓ =
[
∥θ̂(ℓ)∥2 − 5

6
ℓ
n , ∥θ̂(ℓ)∥2 + 5

6
ℓ
n

]
and

ℓ̂ = min
{

ℓ̃ | ∩ℓ≥ℓ̃Iℓ ̸= ∅
}

. Let θ̃ ∈ ∩ℓ≥ℓ̃Iℓ.

Theorem
There exist positive absolute constants c1, c2 and c3 such that in the
regime where ∥θ∥2 ≥ c1

(
d
n ∨ δ

)
,

P
(∣∣∣θ̃2 − ∥θ∥2

∣∣∣ ≥ ∥θ∥2

2

)
≤ c2e−c3n∥θ∥2

.

This shows that θ̃2 is an appropriate estimator of ∥θ∥2 up to multiplicative
constants.
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Conclusion

• Clustering is easier under the slowly mixing regime.
• Unexpected behavior of the Bayes risk in some regimes.
• Many questions are still not answered: full adaptation, high

dimension, estimation of δ.
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