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Hidden Markov Model

Markov process :

Observations : @ @ @ @

Figure: A Hidden Markov Model.

Latent (unobserved) variables (7x)x form a Markov chain.
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Markov process :

Observations : @ @ @ @

Figure: A Hidden Markov Model.

Latent (unobserved) variables (7x)x form a Markov chain.
Observations (X)x are independent conditionnally to (7x)«-.
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Xi=0ni +&
where

- &1,...,&, are standard Gaussian random vectors

- (Ni)1<i<n is @ Markov chain with two states —1 and 1

b 1-96
Here, ¢ is allowed to depend on n and to be very small.

- The transition matrix ensures @ = (1 —9 0 )

Some natural questions arise in this setting:
- Estimation of 6
- Estimation of §

- Clustering
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The problem of estimation

The problem of estimating 0 has already been studied recently in
Karagulyan and Ndaoud 2024. Let

M(n,d,6,t) = inf sup By [min{[0(Xs.n) — 0|, |6(X0.0) + 0] }]
0(Xw:n) [|0]|=t

4/19



The problem of estimation

The problem of estimating 0 has already been studied recently in
Karagulyan and Ndaoud 2024. Let

M(n,d,6,t) = inf sup By [min{[0(Xs.n) — 0|, |6(X0.0) + 0] }]
0(Xw:n) [|0]|=t
It was shown in Karagulyan and Ndaoud 2024 that when d < §n,
1/4
t if t < (%d) /

9o () << s

M(n,d,é,t) < 1
\/g if Vo <t
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The problem of clustering

Let n = (i)1<;<, and £(7), ) = min,e( 11y ) + vn| where |.| is the
Hamming distance. We define the risk of a clustering procedure 7} as

R (07 57 ﬁ) =E [E (ﬁ(Xlzn)7 77)]
and the Bayes risk of clustering as

inf R (6,6,7)
n
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Let n = (i)1<;<, and £(7), ) = min,e( 11y ) + vn| where |.| is the
Hamming distance. We define the risk of a clustering procedure 7} as

R (07 57 ﬁ) =E [E (ﬁ(Xlzn)7 77)]
and the Bayes risk of clustering as

inf R (6,6,7)
n

This risk was studied in Gassiat, Kaddouri and Naulet 2023 in the strongly

mixing setting. It was shown that for &, = 65%
0*(1 = dn) o2 Lo
— e <infR(0,0,7) <(1—90
2(1_5) e —”% (7 777)—( )e 2

When § is allowed to be very small, this fails to provide a precise
understanding of the interplay between the strength of the signal and the

Markovian dependence measured by 4.
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Two frameworks

We study the risk of clustering observations in two frameworks:

o Offline setting: All observations are used in the clustering
procedures. Clustering rules are of the form:

TA](len) = (ﬁi(yl:n))1gi§n-
The Bayes risk of online clustering will be denoted infson R (6, 6,1) .
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Two frameworks

We study the risk of clustering observations in two frameworks:

o Offline setting: All observations are used in the clustering
procedures. Clustering rules are of the form:

77( Yl:n) - (ﬁi(yl:n))lg,'gn-
The Bayes risk of online clustering will be denoted infson R (6, 6,1) .

@ Online setting: Observations are clustered sequentially, with access
to the past observations only at each step. Clustering rules are of the

form: A(Y1.n) = (Mi(Y1:0))1<i<n-
The Bayes risk of offline clustering will be denoted inf; R (6,0,7) .
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Online framework

When § > 1,
if |0]|% < 26

inf R (6,5,7) < { are (1o g(1gF) +1) 20 < [j6]2 <l0g(})

7° Lo
e if]|6]2 > log(} )

1
2

This upper-bound is reached by this online clustering procedure:

- For i€ [1,k]:
ﬁi(Xl:n) = Sign ((X,‘, ‘9>)

fi(X1.n) = sign (< Z XJ-,9>>
j=i—k+1

with k = [ﬁz log (%)—‘ . 7/19

- For i > k:



Online framework

When § 2 1,
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Online framework

When § > 1,

1 if ||0]1> < 26
. A 5 02 .
inf R (0,6,9) 2 { iz (log (155) +1) iF26 < |02 < log (})

! 52012 i ] > log (1)
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Behavior of the Bayes risk of online clustering

inf .00 R (6,8, 7)

o lIol?
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1

Behavior of the Bayes risk of online clustering in the strongly mixing regime.
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Behavior of the Bayes risk of online clustering in the slowly mixing regime.
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Offline framework
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Offline framework
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Offline clustering procedure

Consider 7j,_1 and 7j,41 are the online estimators defined by:

1 a—1 a+k
77:1—1()(3 k:a— 1 Z XJa 0 77a+1(Xa+1 a+k) Z Xja 0
.l a—k _] a+1

0112
where k = “9”2 log (H I ﬂ
Consider the clustering procedure 7j such that for a € [1, n]:

ﬁa(ﬁa—h Xa—k:a—l—k) ﬁa+1) =

fla—1 if fla 1 = flay1, ||0]? < log (%) and a € [k+1,n— K]
sign ((X5,0)) else.
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Lower-bound

When § > 1,
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inf R (0,0,7) 2
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Lower-bound

When § > 1,

1 if |0]]? < 26
infR(6,6,4) 2@ iF20 <62 <1
! se=2I01”if1|9)2 > 1
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Behavior of the Bayes risk of offline clustering

ge 191" lo|”?

Figure: Behavior of the Bayes risk of offline clustering in the slowly mixing regime
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WLOG, assume n = k. For each bucket i € [1,¢], consider the sample
mean of k observations inside the i-th bucket

~ 1 ki
Xi=2 > X
Jj=k(i—1)+1

Note that

< _ &
Xi=0ni + —=
Tk

where 7; = % Jl'ik(i—1)+1 n; and &; is a standard Gaussian vector.
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WLOG, assume n = k. For each bucket i € [1,¢], consider the sample
mean of k observations inside the i-th bucket

. 1 ki
Xi=2 > X
j=k(i—1)+1

Note that ¢
X; = 0n; + ﬁ

where 7; = % Jl'ik(i—1)+1 n; and &; is a standard Gaussian vector.
We stack the ¢ terms in an RY*? matrix form as follows:

5(—9771—4-5;

We then consider the Gram matrix of observations XX .
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It is easy to see that:

E [||7)|? 1

1”T
[XX . >

14

Since our goal is adaptation up to multiplicative constants, it is natural to
consider the following estimator of ||6||:

1 1/2

OIS e

op

Proposition

There exists c > 0 and C > 0 such that fore > 0 and
¢> n|0)? v —2' V 2 nd,

il

A TR 2 ¢ _eet
IO = 02| > Ce; ) < o™

T = = = v




Adaptation

Define now I, = [|6(0)| — 3£, 0(0)]> + $5] and
é: min {Z’ mZZZIZ ;lé @} Let é (S mezglg_

There exist positive absolute constants ci, ¢, and c3 such that in the
regime where ||0]|?> > ¢ (%’ v 5),

~ 0|2
£ (\92 - oye] = 19 ) < cpemenlol?,

v

This shows that #2 is an appropriate estimator of ||§||> up to multiplicative
constants.

17/19



Conclusion

= Clustering is easier under the slowly mixing regime.
= Unexpected behavior of the Bayes risk in some regimes.

= Many questions are still not answered: full adaptation, high
dimension, estimation of §.
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