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Outline

e Part 1: Frank-Wolfe and differential privacy
@ Part 2: Nesterov's momentum and heavy-tailed robustness

Laurentiu Marchis (University of Cambridge) Private & Robust Estimation



Part 1: Frank-Wolfe and differential
privacy
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sics of (€,0)-DP

o We work with datasets X € £" and mechanisms taking values in R”.
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Basics of (€,0)-DP

o We work with datasets X € £" and mechanisms taking values in R”.
@ Gaussian noise addition: For a function G with />-sensitivity

Ag = sup [|G(X) —G(X")][,,
X~ X!

the mechanism

GX)+ N (o, mé"fw‘s)/,,)

is (e, 5)-DP
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Basics of (€,0)-DP

o We work with datasets X € £" and mechanisms taking values in R”.
@ Gaussian noise addition: For a function G with />-sensitivity

Ag = sup [|G(X) —G(X")][,,
X~ X!

the mechanism

GX)+ N (o, mé"f”‘”@,)

is (e, 5)-DP

@ Recall the advanced composition (Dwork et al. (2010)): For
e €(0,0.9], and 6, T > 0, the class of

¢ 9 _pp
2,/2T log(2/6) 2T

mechanisms is (€, d)-DP under T-fold adaptive composition
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The Frank—Wolfe method: A projection-free approach

@ Projected gradient descent requires
projections onto the constraint set C 3 o o 3 f
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The Frank—Wolfe method: A projection-free approach

@ Projected gradient descent requires
projections onto the constraint set C S f R
@ Problem: computationally expensive i
for complicated sets C —Vf(xr) - —

@ Solution: linearize the convex
objective f and move towards a
minimizer v; € C (e.g. Frank & Wolfe
1956):

v = argmin VF(x.) v,
t gvec (xt)

Xer1 = (L—1me) Xt + 1t ve
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Frank—Wolfe (continued)

e Frank—Wolfe has seen renewed interest in ML (Jaggi 2013,
Lacoste-Julien & Jaggi 2015, Asi et al. 2021, Raff et al. 2023); the
LASSO (constrained form), for instance:

n

1

: T2
min  — i —x; 0
lol:<D 2n i:1(y, 6)
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Frank—Wolfe (continued)

e Frank—Wolfe has seen renewed interest in ML (Jaggi 2013,
Lacoste-Julien & Jaggi 2015, Asi et al. 2021, Raff et al. 2023); the
LASSO (constrained form), for instance:

n

o1 T2
min  — i —x; 0
lol:<D 2n i:1(y, 6)

@ Recent variants target strongly convex objectives (Li et al. 2020) and
alternative geometries, improving convergence
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Frank—Wolfe (continued)

e Frank—Wolfe has seen renewed interest in ML (Jaggi 2013,
Lacoste-Julien & Jaggi 2015, Asi et al. 2021, Raff et al. 2023); the
LASSO (constrained form), for instance:

n

o1 T2
min  — i —x; 0
lol:<D 2n i:1(y, 6)

@ Recent variants target strongly convex objectives (Li et al. 2020) and
alternative geometries, improving convergence

@ An accelerated Frank—Wolfe for smooth convex f over ¢»-balls (more
generally, strongly convex sets; Garber & Hazan 2015) yields

f(Xt) — f(X*) ,S, e*@(t)’ Xy = arg m|rc1 f(X)
NS

vs. O(1/t) in the classical case
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Motivation: (€,0)-DP ERM via convex optimization

o Problem: privately minimize the ER: £(0,D,) = 1 377 | £(0, z)
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Motivation: (€,0)-DP ERM via convex optimization

o Problem: privately minimize the ER: £(0,D,) = 1 377 | £(0, z)

@ Privacy-by-noise (Bassily et al. 2014, Jain & Thakurta 2014, Wang et
al. 2017, Smith et al. 2017, Cai et al. 2021):
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Motivation: (€,0)-DP ERM via convex optimization

o Problem: privately minimize the ER: £(0,D,) = 1 377 | £(0, z)

@ Privacy-by-noise (Bassily et al. 2014, Jain & Thakurta 2014, Wang et
al. 2017, Smith et al. 2017, Cai et al. 2021):
Gradient perturbation add noise to gradients at each step (most

popular)

o Talwar et al. (2015): private Frank—Wolfe using noisy gradients for
minimizing an Lp-Lipschitz, 8--smooth loss over a convex set C
(diameter ||C]|2 < o0)
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Motivation: private Frank-Wolfe

o v; = argmin(VL(0:, D) + &) v, and & ~ N (07 %ﬁf(n‘s)lp)
veC
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Motivation: private Frank-Wolfe

o v; = argmin(VL(0:, D) + &) v, and & ~ N (07 %ﬁf(n‘s)lp)
veC

) 9t+1 = (1 — 77t)9t + Nt Ve, and e = QLH
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Motivation: private Frank-Wolfe

o v; = argmin(VL(0:, D) + &) v, and & ~ N (07 %ﬁf(n‘s)lp)
veC

o 0t+1 = (1 — 77t)9t =+ Nt Ve, and Ne = 25t

2 2/3
@ Running for T = <%GHC2"6) gives

. B2([ClloL2Ge)*”?
E [L(QT,D,,) — ?elg E(H,Dn)] 0 ( (ne)2/3 ) ’

where Ge = Ep 0,1, [sup HTb]
oeC
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Motivation: continued

@ Can we get better rates and iteration counts 77 If we can, then how?
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@ Can we get better rates and iteration counts 77 If we can, then how?

@ Our method: Run the private Frank-Wolfe method with an adequate
choice of 7 (independent of t and see later) and optimize over a
strongly convex set:
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Motivation: continued

@ Can we get better rates and iteration counts 77 If we can, then how?
@ Our method: Run the private Frank-Wolfe method with an adequate
choice of 7 (independent of t and see later) and optimize over a
strongly convex set:
o v, =argmin(VL(0;,Dy) + &) v, and & ~ N (0, wlp)

22
VEC n<e
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Motivation: continued

@ Can we get better rates and iteration counts 77 If we can, then how?

@ Our method: Run the private Frank-Wolfe method with an adequate
choice of 7 (independent of t and see later) and optimize over a
strongly convex set:

o vi = argmin(VL(0;,D,) + &) v, and & ~ N (o, w/p)
veC

] 0t+l = (1 — n)et =+ 7]Vt
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Analysis of accelerated Frank-Wolfe

@ Our approach: Develop a general optimization framework to allow
noise, tailor the learning rate n to accelerate, and take more
advantage of the geometry of C
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Analysis of accelerated Frank-Wolfe

@ Our approach: Develop a general optimization framework to allow
noise, tailor the learning rate n to accelerate, and take more
advantage of the geometry of C

@ Relaxed and accelerated Frank-Wolfe:
xtr1 = (1= n)x + nvs,

where v; € C s.t. v VFf(x;) < m€|2 vIVE(x)+ A
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Relaxed and accelerated Frank-Wolfe

Theorem 1 (Marchis and Loh 2025)

Let C = B>(D) and f a convex, S¢-smooth function such that
0 < r <||VFf(x)||2 for all x € C. Then, for t > 1,

3An

Flxe) = Flx) < € (F0) = F)) + 575,

xeC

where x, € argmin f(x), ¢ = max{%,l _ Wr&}' and 77 = min {1’ 4Drﬁf}-

v

@ Modification of arguments from Garber and Hazan 2015
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Relaxed and accelerated Frank-Wolfe

Theorem 1 (Marchis and Loh 2025)

Let C = B>(D) and f a convex, S¢-smooth function such that
0 < r <||VFf(x)||2 for all x € C. Then, for t > 1,

3An

F(xe) = f(x) < " (F(x0) — (%)) + 0-c)

where x, € argmin f(x), ¢ = max{%,l — ﬁ}, and 7 = min {1, 4Dr/3 }
xeC f f

v

@ Modification of arguments from Garber and Hazan 2015

@ More generally, one can take C to be strongly convex
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Relaxed and accelerated Frank-Wolfe

Theorem 1 (Marchis and Loh 2025)

Let C = B>(D) and f a convex, S¢-smooth function such that
0 < r <||VFf(x)||2 for all x € C. Then, for t > 1,

Fl) = Flx) < € (Fo0) = F()) + 57—

where x, € argmin f(x), ¢ = max{%, 1-— W’&}, and 7 = min {1
xeC

r
» 4D B¢

3

@ Modification of arguments from Garber and Hazan 2015
@ More generally, one can take C to be strongly convex

@ Next, we use this in the context of privacy
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Private and accelerated Frank-Wolfe for distribution-free

data

o Squared error loss L(0, (x, yi)) = 3(vi — x70)2, |yil, ||xil| < 1
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Private and accelerated Frank-Wolfe for distribution-free

data

o Squared error loss L(0, (x, yi)) = 3(vi — x70)2, |yil, ||xil| < 1
e C =By(D), i.e. ridge regression
o Note Bz = 7 ||y xix” ||, < p. L2 = \/p+ pD
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Private and accelerated Frank-Wolfe for distribution-free

data

o Squared error loss L(0, (x, yi)) = 3(vi — x70)2, |yil, ||xil| < 1

e C =By(D), i.e. ridge regression

o Note B, =1 HZ,”:l x,-xl-TH2 <p Ly=<,/p+pD

@ Assume o!rené w 2> 1 (can be satisfied with an appropriate
linear model), we get for T = log(n) that

E | £(07,Dp) — min 5(971)”)} ~5 <(\/;3 - pD)Dﬁ)

ne
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Comparisons

e For squared error loss, |yil, ||xi|lcc <1, and C = Bo(D), Talwar et al.

_ 2/3 2/3
2015 gives a rate of O (((\fpﬂf)[ﬂp) ) for T =< (%)
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@ Minimax optimality:
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Comparisons

e For squared error loss, |yil, ||xi|lcc <1, and C = Bo(D), Talwar et al.

_ 2/3 2/3
2015 gives a rate of O (((\fpﬂf)[ﬂp) ) for T =< (%)

@ Minimax optimality:

2/3
e For D = -L our acceleration improves the rate of (@> to Y2 and
VP ne ne
2/3
the iteration count T from (%) to log(n)
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Comparisons

e For squared error loss, |yil, ||xi|lcc <1, and C = Bo(D), Talwar et al.

_ 2/3 2/3
2015 gives a rate of O (((\fpﬂf)[ﬂp) ) for T =< (%)

@ Minimax optimality:

[

ne ne

) o 23
o For D < our acceleration improves the rate of ( ) to ¥= and

7p

2/3
the iteration count T from (%) to log(n)
p3/2

e For nx log(p) We can show the optimality of our accelerated method
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e Data: (x;,y;) € RP x R are i.i.d. from Pys«:

yxT0* — d(xTo%)
c(o)

Po+(y|x) o< exp < ) o X2yl 1, ExxT] =0
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e Data: (x;,y;) € RP x R are i.i.d. from Pys«:

yxT0* — d(xTo%)
c(o)

@ Mild assumptions on ®: log(1+ e?) satisfies these (logistic regression)

Po+(y|x) o< exp < ) o X2yl 1, ExxT] =0
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e Data: (x;,y;) € RP x R are i.i.d. from Pys«:

yxT0* — d(xTo%)
c(o)

@ Mild assumptions on ®: log(1+ e?) satisfies these (logistic regression)

Po+(y|x) o< exp < ) o X2yl 1, ExxT] =0

@ Privately minimize the negative log-likelihood loss

1 n
£(0,Dp) = — > o(x760) - yix 6 over C=By(D)
i=1
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GLMs: main results

9*

e Vanishing bias: For [|0*|, — D =< -1

n2/5 .
and T=0 (n2/5), B(6*])
L(07,Dy) —  min c(ep)—(’j(l)
I pemy(oly T T T \ /e

i} ~ /1 1
'H9T—9 H2 =0 <r71/2+r12/561/2> ,W.h.p.
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GLMs: comparisons to Talwar et al. (2015)

e For e > n=2/5,
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GLMs: comparisons to Talwar et al. (20

e For e > n=2/5,

; 1 1
o acceleration — - outperforms the (neyers Tate

Laurentiu Marchis (University of Cambridge) Private & Robust Estimation



GLMs: comparisons to Talwar et al. (20

e For e > n=2/5,
; 1 1
o acceleration — - outperforms the (neyers Tate

o the iteration count T improves: n?/% vs. (ne)?/?
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Part 2: Nesterov's momentum and
heavy-tailed robustness
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Heavy-tailed robustness: setup & motivation

e Data (x;,y;) € RP x R i.i.d. from
y=x"0"4+w, wlix, E[w]=0, E[w?’]x]1,

with E[x] = 0, E[xx"] = 0, and mild moment assumptions on x
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Heavy-tailed robustness: setup & motivation

e Data (x;,y;) € RP x R i.i.d. from
y=x"0"4+w, wlix, E[w]=0, E[w?’]x]1,

with E[x] = 0, E[xx"] = 0, and mild moment assumptions on x

o Goal: estimate 6* robustly under heavy tails
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Heavy-tailed robustness: setup & motivation

e Data (x;,y;) € RP x R i.i.d. from
y=x"0"4+w, wlix, E[w]=0, E[w?’]x]1,

with E[x] = 0, E[xx"] = 0, and mild moment assumptions on x
o Goal: estimate 6* robustly under heavy tails
o Naive GD:

n

9t+1 = 01- — Z;(X,Tet - yi)Xi7

but sample-mean gradients can be suboptimal without sub-Gaussian
tails
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Geometric median of means (Guom)

@ Use a "high-dimensional median”:
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Geometric median of means (Guom)

@ Use a "high-dimensional median”:
o Partition gradients {(x.] 0 — y;)x}"_,
into b buckets, compute bucket means

{1(0)} 71
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Geometric median of means (Guom)

@ Use a "high-dimensional median”:

o Partition gradients {(x.] 0 — y;)x}"_,
into b buckets, compute bucket means
{1;(0)}7-1

@ Define the geometric median of means:

b

g(#) = argmin >l = i (0)]12
j=1
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Geometric median of means (Guom)

@ Use a "high-dimensional median”:

o Partition gradients {(x.] 0 — y;)x}"_,
into b buckets, compute bucket means
{1;(0)}7-1

@ Define the geometric median of means:

b

g(#) = argmin >l = i (0)]12
j=1

@ Gives sub-Gaussian-type concentration
under few moments (Minsker 2015)
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Robust gradient descent (GD)

@ Replace sample mean by g(6):

Orr1 =0 —ng(0:)
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Robust gradient descent (GD)

@ Replace sample mean by g(6):

Orr1 =0 —ng(0:)

o Let 7y = Amin(EPx"]), 7w = Amax(E[xx"]) be constants
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Robust gradient descent (GD)

@ Replace sample mean by g(6):

Orr1 =0 —ng(0:)

o Let 7y = Amin(E[x ")), 74 = )\max(E[XXT]) be constants
@ Prasad et al. (2020): for n = and n 2 Tplog(T/¢),

T+T
9

Tlog(T
60— 0710 < k4 [ PTOETIS)  veer

w.p. > 1—¢, for some k < T
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Robust gradient descent (GD)

@ Replace sample mean by g(6):

Orr1 =0 —ng(0:)

o Let 7y = Amin(E[x ")), 74 = )\max(E[XXT]) be constants
@ Prasad et al. (2020): for n = and n 2 Tplog(T/¢),

T+T

)

Tlog(T
60— 0710 < k4 [ PTOETIS)  veer

w.p. > 1—¢, for some k < T

@ Nesterov's momentum:

9t+1 =0:+ >\(0t - gt—l) - ng(ﬂt + >\(0t - et—l))
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Nesterov's acceleration (AGD) & comparisons

Theorem (Marchis & Loh, 2025)

Tu - VTu— VTt
If 1< — <176 and n 2 Tplog(T/¢), withn=— and A\ =
- and n 2 Tplog(T/¢), with n an eyt

then w.p.> 1 —(,
2 [pTlog(T
16:—0*lo s (1= /)" + %(/C) vt € [T].

o Can show k > (1 — \/7¢/7,)/?
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Nesterov's acceleration (AGD) & comparisons

Theorem (Marchis & Loh, 2025)

u . 2 -
1< % < 1.76 and n > Tplog(T/C), with 57 = > and A = YL VTt
s Ty Viu VT

then w.p.> 1 —(,

10: = "ll2 5 (1 - \/;I;)t/2 1y /PTET/O) ey,

n

o Can show k > (1 — \/7¢/7,)/?

@ Hence AGD reduces the contraction parameter while keeping the
statistical error the same
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Contributions

Private estimation

@ Acceleration results in smaller iteration counts, giving faster rates and
requiring less noise for privacy

Heavy-tailed robustness
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achieve T =< log(n)
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Contributions

Private estimation

@ Acceleration results in smaller iteration counts, giving faster rates and
requiring less noise for privacy

@ For a lower bound on the gradient and an ¢»-ball, Frank-Wolfe can
achieve T =< log(n)

@ The growing constraint set for GLMs gives the benefits of
acceleration, while removing the bias as n — oc.

Heavy-tailed robustness
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Contributions

Private estimation

@ Acceleration results in smaller iteration counts, giving faster rates and
requiring less noise for privacy

@ For a lower bound on the gradient and an ¢»-ball, Frank-Wolfe can
achieve T =< log(n)

@ The growing constraint set for GLMs gives the benefits of
acceleration, while removing the bias as n — oc.

Heavy-tailed robustness

@ Using Gpjonm results in sub-Gaussian concentration of gradients
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Contributions

Private estimation

@ Acceleration results in smaller iteration counts, giving faster rates and
requiring less noise for privacy

@ For a lower bound on the gradient and an ¢»-ball, Frank-Wolfe can
achieve T =< log(n)

@ The growing constraint set for GLMs gives the benefits of
acceleration, while removing the bias as n — oc.

Heavy-tailed robustness
@ Using Gpjonm results in sub-Gaussian concentration of gradients

@ Acceleration via Nesterov improves the exponential decay with t
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Extras & reference

o We also study Frank-Wolfe + heavy-tailed robustenss and Nesterov +
privacy

e Laurentiu Marchis & Po-Ling Loh (2025). On the benefits of
accelerated optimization in robust and private estimation. arXiv
preprint arXiv:2506.03044.

Thank you!
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