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Basics of (ϵ, δ)-DP

We work with datasets X ∈ En and mechanisms taking values in Rp.

Gaussian noise addition: For a function G with ℓ2-sensitivity

∆G := sup
X∼X ′

∥∥G(X )− G(X ′)
∥∥
2
,

the mechanism

G(X ) + N

(
0,

2∆2
G log(2/δ)

ϵ2
Ip

)
is (ϵ, δ)-DP

Recall the advanced composition (Dwork et al. (2010)): For
ϵ ∈ (0, 0.9], and δ,T > 0, the class of(

ϵ

2
√

2T log(2/δ)
,
δ

2T

)
− DP

mechanisms is (ϵ, δ)-DP under T -fold adaptive composition
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The Frank–Wolfe method: A projection-free approach

Projected gradient descent requires
projections onto the constraint set C

Problem: computationally expensive
for complicated sets C
Solution: linearize the convex
objective f and move towards a
minimizer vt ∈ C (e.g. Frank & Wolfe
1956):

vt = argmin
v∈C

∇f (xt)
T v ,

xt+1 = (1− ηt) xt + ηt vt

Laurentiu Marchis (University of Cambridge) Private & Robust Estimation
September 4, 2025 Joint work with Po-Ling Loh
5 / 23



The Frank–Wolfe method: A projection-free approach

Projected gradient descent requires
projections onto the constraint set C
Problem: computationally expensive
for complicated sets C

Solution: linearize the convex
objective f and move towards a
minimizer vt ∈ C (e.g. Frank & Wolfe
1956):

vt = argmin
v∈C

∇f (xt)
T v ,

xt+1 = (1− ηt) xt + ηt vt

Laurentiu Marchis (University of Cambridge) Private & Robust Estimation
September 4, 2025 Joint work with Po-Ling Loh
5 / 23



The Frank–Wolfe method: A projection-free approach

Projected gradient descent requires
projections onto the constraint set C
Problem: computationally expensive
for complicated sets C
Solution: linearize the convex
objective f and move towards a
minimizer vt ∈ C (e.g. Frank & Wolfe
1956):

vt = argmin
v∈C

∇f (xt)
T v ,

xt+1 = (1− ηt) xt + ηt vt

Laurentiu Marchis (University of Cambridge) Private & Robust Estimation
September 4, 2025 Joint work with Po-Ling Loh
5 / 23



Frank–Wolfe (continued)

Frank–Wolfe has seen renewed interest in ML (Jaggi 2013,
Lacoste-Julien & Jaggi 2015, Asi et al. 2021, Raff et al. 2023); the
LASSO (constrained form), for instance:

min
∥θ∥1≤D

1

2n

n∑
i=1

(yi − xTi θ)2

Recent variants target strongly convex objectives (Li et al. 2020) and
alternative geometries, improving convergence

An accelerated Frank–Wolfe for smooth convex f over ℓ2-balls (more
generally, strongly convex sets; Garber & Hazan 2015) yields

f (xt)− f (x∗) ≲ e−Θ(t), x∗ = argmin
x∈C

f (x)

vs. O(1/t) in the classical case
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Motivation: (ϵ, δ)-DP ERM via convex optimization

Problem: privately minimize the ER: L(θ,Dn) =
1
n

∑n
i=1 L(θ, zi )

Privacy-by-noise (Bassily et al. 2014, Jain & Thakurta 2014, Wang et
al. 2017, Smith et al. 2017, Cai et al. 2021):

Gradient perturbation add noise to gradients at each step (most
popular)

Talwar et al. (2015): private Frank–Wolfe using noisy gradients for
minimizing an L2-Lipschitz, βL-smooth loss over a convex set C
(diameter ∥C∥2 < ∞)
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Motivation: private Frank-Wolfe

vt = argmin
v∈C

(∇L(θt ,Dn) + ξt)
T v , and ξt ∼ N

(
0,

32L22T log2(T/δ)
n2ϵ2

Ip
)

θt+1 = (1− ηt)θt + ηtvt , and ηt =
2

2+t

Running for T ≍
(
βL||C||22nϵ

L2GC

)2/3
gives

E
[
L(θT ,Dn)−min

θ∈C
L(θ,Dn)

]
= Õ

(
β
1/3
L (||C||2L2GC)

2/3

(nϵ)2/3

)
,

where GC = Eb∼N(0,Ip)

[
sup
θ∈C

θTb

]
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Motivation: continued

Can we get better rates and iteration counts T? If we can, then how?

Our method: Run the private Frank-Wolfe method with an adequate
choice of η (independent of t and see later) and optimize over a
strongly convex set:

vt = argmin
v∈C

(∇L(θt ,Dn) + ξt)
T v , and ξt ∼ N

(
0,

32L2
2T log2(T/δ)

n2ϵ2 Ip
)

θt+1 = (1− η)θt + ηvt
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Analysis of accelerated Frank-Wolfe

Our approach: Develop a general optimization framework to allow
noise, tailor the learning rate η to accelerate, and take more
advantage of the geometry of C

Relaxed and accelerated Frank-Wolfe:

xt+1 = (1− η)xt + ηvt ,

where vt ∈ C s.t. vTt ∇f (xt) ≤ min
v∈C

vT∇f (xt) + ∆
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Relaxed and accelerated Frank-Wolfe

Theorem 1 (Marchis and Loh 2025)

Let C = B2(D) and f a convex, βf -smooth function such that
0 < r ≤ ||∇f (x)||2 for all x ∈ C. Then, for t ≥ 1,

f (xt)− f (x∗) ≤ ct (f (x0)− f (x∗)) +
3∆η

2(1− c)
,

where x∗ ∈ argmin
x∈C

f (x), c = max
{

1
2 , 1−

r
8Dβf

}
, and η = min

{
1, r

4Dβf

}
.

Modification of arguments from Garber and Hazan 2015

More generally, one can take C to be strongly convex

Next, we use this in the context of privacy
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Private and accelerated Frank-Wolfe for distribution-free
data

Squared error loss L(θ, (xi , yi )) = 1
2(yi − xTi θ)2, |yi |, ||xi ||∞ ≤ 1

C = B2(D), i.e. ridge regression

Note βL = 1
n

∥∥∑n
i=1 xix

T
i

∥∥
2
≤ p, L2 ≍

√
p + pD

Assume inf
θ∈C

||∇L(θ,Dn)||2
DβL

≳ 1 (can be satisfied with an appropriate

linear model), we get for T ≍ log(n) that

E
[
L(θT ,Dn)−min

θ∈C
L(θ,Dn)

]
= Õ

(
(
√
p + pD)D

√
p

nϵ

)
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(
(
√
p + pD)D

√
p

nϵ

)

Laurentiu Marchis (University of Cambridge) Private & Robust Estimation
September 4, 2025 Joint work with Po-Ling Loh
12 / 23



Private and accelerated Frank-Wolfe for distribution-free
data

Squared error loss L(θ, (xi , yi )) = 1
2(yi − xTi θ)2, |yi |, ||xi ||∞ ≤ 1

C = B2(D), i.e. ridge regression

Note βL = 1
n

∥∥∑n
i=1 xix

T
i

∥∥
2
≤ p, L2 ≍

√
p + pD

Assume inf
θ∈C

||∇L(θ,Dn)||2
DβL

≳ 1 (can be satisfied with an appropriate

linear model), we get for T ≍ log(n) that

E
[
L(θT ,Dn)−min

θ∈C
L(θ,Dn)

]
= Õ
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Comparisons

For squared error loss, |yi |, ||xi ||∞ ≤ 1, and C = B2(D), Talwar et al.

2015 gives a rate of Õ

((
(
√
p+pD)D2p

nϵ

)2/3)
, for T ≍

(
nϵD

1+2
√
pD

)2/3

Minimax optimality:

For D ≍ 1√
p , our acceleration improves the rate of

(√
p

nϵ

)2/3
to

√
p

nϵ and

the iteration count T from
(

nϵ√
p

)2/3
to log(n)

For n ≍ p3/2

log(p) we can show the optimality of our accelerated method
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GLMs: setup

Data: (xi , yi ) ∈ Rp × R are i.i.d. from Pθ∗ :

Pθ∗(y |x) ∝ exp

(
yxT θ∗ − Φ(xT θ∗)

c(σ)

)
, ||x ||2, |y | ≲ 1, E[xxT ] ≻ 0

Mild assumptions on Φ: log(1+ ez) satisfies these (logistic regression)

Privately minimize the negative log-likelihood loss

L(θ,Dn) =
1

n

n∑
i=1

Φ(xTi θ)− yix
T
i θ over C = B2(D)
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GLMs: main results

Vanishing bias: For ∥θ∗∥2 − D ≍ 1
n2/5

and T = Θ̃
(
n2/5

)
,

• L(θT ,Dn)− min
θ∈B2(||θ∗||2)

L(θ,Dn) = Õ

(
1

n4/5ϵ

)
• ||θT − θ∗||2 = Õ

(
1

n1/2
+

1

n2/5ϵ1/2

)
,w .h.p.
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GLMs: comparisons to Talwar et al. (2015)

For ϵ ≳ n−2/5,

acceleration 1
n4/5ϵ

outperforms the 1
(nϵ)2/3

rate

the iteration count T improves: n2/5 vs. (nϵ)2/3
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Part 2

Part 2: Nesterov’s momentum and
heavy-tailed robustness
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Heavy-tailed robustness: setup & motivation

Data (xi , yi ) ∈ Rp × R i.i.d. from

y = xT θ∗ + w , w |= x , E[w ] = 0, E[w2] ≍ 1,

with E[x ] = 0, E[xxT ] ≻ 0, and mild moment assumptions on x

Goal: estimate θ∗ robustly under heavy tails

Naive GD:

θt+1 = θt −
η

n

n∑
i=1

(xTi θt − yi )xi ,

but sample-mean gradients can be suboptimal without sub-Gaussian
tails
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Geometric median of means (GMOM)

Use a “high-dimensional median”:

Partition gradients {(xTi θ − yi )xi}ni=1

into b buckets, compute bucket means
{µ̂j(θ)}bj=1

Define the geometric median of means:

g(θ) = argmin
µ

b∑
j=1

∥µ− µ̂j(θ)∥2

Gives sub-Gaussian-type concentration
under few moments (Minsker 2015)
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Robust gradient descent (GD)

Replace sample mean by g(θ):

θt+1 = θt − η g(θt)

Let τℓ = λmin(E[xxT ]), τu = λmax(E[xxT ]) be constants

Prasad et al. (2020): for η = 2
τu+τℓ

and n ≳ Tp log(T/ζ),

∥θt − θ∗∥2 ≲ kt +

√
pT log(T/ζ)

n
, ∀t ∈ [T ],

w.p. ≥ 1− ζ, for some k < τu
τu+τℓ

Nesterov’s momentum:

θt+1 = θt + λ(θt − θt−1)− η g
(
θt + λ(θt − θt−1)

)
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Nesterov’s acceleration (AGD) & comparisons

Theorem (Marchis & Loh, 2025)

If 1 <
τu
τℓ

< 1.76 and n ≳ Tp log(T/ζ), with η =
2

τu
and λ =

√
τu −

√
τℓ√

τu +
√
τℓ
,

then w.p.≥ 1− ζ,

∥θt − θ∗∥2 ≲
(
1−

√
τℓ
τu

)t/2
+

√
pT log(T/ζ)

n
∀t ∈ [T ].

Can show k > (1−
√
τℓ/τu)

1/2

Hence AGD reduces the contraction parameter while keeping the
statistical error the same
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Contributions

Private estimation

Acceleration results in smaller iteration counts, giving faster rates and
requiring less noise for privacy

For a lower bound on the gradient and an ℓ2-ball, Frank-Wolfe can
achieve T ≍ log(n)

The growing constraint set for GLMs gives the benefits of
acceleration, while removing the bias as n → ∞.

Heavy-tailed robustness

Using GMOM results in sub-Gaussian concentration of gradients

Acceleration via Nesterov improves the exponential decay with t
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Extras & reference

We also study Frank-Wolfe + heavy-tailed robustenss and Nesterov +
privacy

Laurentiu Marchis & Po-Ling Loh (2025). On the benefits of
accelerated optimization in robust and private estimation. arXiv
preprint arXiv:2506.03044.

Thank you!

Laurentiu Marchis (University of Cambridge) Private & Robust Estimation
September 4, 2025 Joint work with Po-Ling Loh
23 / 23


	Introduction (Differential Privacy)
	Motivation
	Relaxed and accelerated Frank-Wolfe
	Generalized Linear Models
	Heavy-Tailed Robustness

