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1 Overview
Topics:

e Huber’s theory: Minimax bias, minimax variance

e Hampel’s theory: Influence functions

e Extensions: Linear regression, hypothesis testing

e Modern perspectives: Adversarial contamination, heavy-tailed data
Books:

e Huber & Ronchetti, “Robust Statistics”

e Hampel, Ronchetti, Rousseeuw & Stahel, “Robust Statistics: The Ap-
proach Based on Influence Functions”

2 Intro to robustness

e Deals with deviations from ideal models and their dangers for corre-
sponding inference procedures

e Goal is to develop procedures that are still reliable and reasonably
efficient under small deviations from the model (e.g., an e-neighborhood
of the assumed model)

Outlier rejection?

e Might consider a two-step procedure which first “cleans” data, then
applies classical estimation procedure

e However, outliers may be difficult to recognize without an initial (some-
what) robust estimator



e Multiple outliers may “mask” each other so that none are rejected

e False rejections/false retentions may cause cleaned data to deviate from
normal assumptions, too

Robustness desiderata

e Efficiency: Should have nearly(?) optimal efficiency under uncontam-
inated distribution

e Stability: Small deviations from uncontaminated distribution should
only alter performance slightly

e Breakdown: Larger deviations from model should not be catastrophic

2 \ Normal distribution

Using least-squares method

(a)

Using rejection of outliers

Figure 2. Various ways of analyzing data.

Hampel et al., Robust Statistics



3 Huber’s perspective

Reference: Huber, “Robust estimation of a location parameter,” 1964

We will be interested in estimating the location parameter of a distribu-
tion in one dimension. Assume 1, ..., T, < F(t — &) = Fe(t), where F(t)
is a cdf defined over a probability space.

Goal is to estimate . If probability distribution corresponding to F
is symmetric around 0 (F(—x) + F(x) = 1 in the continuous case), then
Ep 2] = 0 and Ep, [z;] = £, so we could use the mean + >" | ;.

However, what if the model is contaminated?

Definition. Consider the class of distributions with cdfs in the set
P(Fo) ={F:F=(1—¢ky+eH H € M},

where M is the set of all possible cdfs. This is known as (Huber’s) e-
contamination model.

Note that for F' € P.(F}), we have
sup [F(t) — Fo(t)| = [(1 — ) Fo(t) + eH (t) — Fo(t)]
t
=e-sup|H(t) — Fo(t)| <,
t
so F' also lies in the e-neighborhood of Fj with respect to the Kolmogorov

distance.
If Ey[z;] = 0, we have

Ep[z;] = (1 —€)0 + eEy[z;].

Hence, if the mean of H is not zero, the sample mean will not be consistent
(and could be arbitrarily biased).

What about using the median? Nice property of medians is that changing
a single point cannot perturb the estimator too much.

3.1 Breakdown point

Definition. Consider a data set X = {x1,...,x,} and an estimator T,,(X).
Form <n, let

b(m; X, T,) = sup |T(X") —T,(X)],

X'eXm

3



where X,,, C R"™ is the set of all data sets differing from X by at most m
points. Then

(X, T,) = — -max{m: b(m; X, T,) < oo}

n m>0
is the breakdown point of T,, at X.

Example. The breakdown point of the mean is 0. The breakdown point of
the median is * - |25*].

In fact, the median achieves the highest possible breakdown point:

Exercise. Show that the median achieves the highest possible breakdown
point among all translation-invariant estimators.

Definition. An estimator is translation-invariant if
To(z1+a,....,op+a)=T,(x1,...,2,) +a,
for all {xy,...,z,} and a € R.

One can also define asymptotic notions of the breakdown point, for which
the maximum breakdown point becomes 50%.

But is this seems like a very rough notion. Also, breakdown point has
nothing to do with a distribution.

3.2 Bias

Going back to the e-contamination model, suppose Fj is symmetric, so
(at the population level) mean and median are equal. (Define median as
inf {m : Fy(m) > 1}.) Suppose Fy = ® (standard normal) for concreteness,
and let P, := P.(P). What is a bound on the (asymptotic) bias of the median
estimator?

Clearly, worst case is when H concentrates all mass on one side of origin.
Median of F' € P, is then the solution to

(1-a() = 5,

so maximum bias is by = ®~* (2(11_5))
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Could we do better? Suppose {7,} is a sequence of estimators for a
parameter T'(Fy). Define the asymptotic bias of a family of estimators 7' =
{T>.}:

b(T,F)=b({T,}, F) = |lim Ep(T,) — T(Fo)|.

n—oo

Then study the minimax problem:

{g}lgT;nggb({Tn}, ),

where we restrict T,, to be in the class 7 of translation-invariant estimators.
Under appropriate distributional assumptions, we can show that when

{T,,} corresponds to the sample median, we have T, it T(F) and lim,, o, Ep(T),) =
T(F) when z; ~ F. It then follows easily that by is an upper bound to the
optimality problem (achieved using the median estimator).

To prove a lower bound, consider the distribution F, € P, constructed
as follows (shifted and centered around by):

Exhibit 4.1 The distribution F; least favorable with respect to bias.

Also consider the version F_ € P, centered around —by. Claim is that for
any {7,,} € T, we have

max {b({T}, F-),0({Tn}, Fi)} = bo.
Suppose not. Then b({7T,}, F_) < by, implying
—bo < lim Ep (Tn) < bo.
n—oo

But ]EF+ (Tn) = Epi (Tn) + 2()0, SO

bo < lim EF+(Tn) < 360,
n—00
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implying b({T},}, F'y) > by, a contradiction. We can see that this proof only
requires symmetry and unimodality of F{ for the construction to succeed.
Conclusion is that

e P 0 =

and the sample median is minimax optimal from the point of view of bias.

3.3 Variance

Why do we use the sample mean as a location estimator anyway? Has
to do with efficiency—minimum asymptotic variance, assuming a normal
distribution.

Theorem 1. Suppose x;’s have density f(x;£). Under appropriate regularity
conditions, the mazximum likelihood estimator

EvLE € arg mgmz —log f(z;€)

i=1

18 asymptotically normal:

\/ﬁ@—&)iN(o,%),

(fﬂoggéxi;f))j

1s the Fisher information. Furthermore, the ratio % s the minimum possi-
ble variance among all asymptotically unbiased estimators of &.

where

I(§) = K¢

However, the situation may become more complicated when samples are
from an e-ball around some distribution. Another minimax problem: Sup-
pose

V(T — T(F)) % N(0, AT, F)),

so A(T, F) is the asymptotic variance of the rescaled, recentered sequence of
estimators. Consider the minimax problem

gir}lgne%{fl({TnhF)' (1)

Motivated by nice results in MLE theory, we will restrict our attention to a
particular class of estimators known as M-estimators.
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Definition. Consider a (symmetric) function p. A minimizerT,, = T, (xq,. ..
of o0 pla; — T,,) is an M-estimator with associated loss function p.

3.4 Asymptotic theory

We will show that under fairly general conditions, the M-estimator 7T,, con-
sistently estimates the population-level parameter and is also asymptotically
normal. Then we can derive formulas for the asymptotic variance and at-
tempt to solve the minimax problem . (Note that for the mean estimator,

max A(T, F') = oo,
FeP.
since we could just consider a mixing distribution H corresponding to N (0, 0?),
for arbitrarily large o.)
Throughout, suppose ) = p’ is a nondecreasing function. For asymptotic
normality, we will assume several conditions:

Theorem 2. Suppose there exists to € R such that Ep[¢(z; — to)] = 0.
Assume the function \(t) = Ep[i(x;—t)] is differentiable at ty and N (ty) < 0.
Also suppose o*(t) := Ep[yp?(x; —t)] — N2(t) is finite, continuous, and nonzero
at tg. Then

VT, —to) % N (o, %) .

The proof uses the Lindeberg CLT.

3.5 Symmetric losses

Corollary 1. Suppose p is a symmetric, convex function and the x;’s have
a symmetric distribution. Suppose the derivative

_ OEp[¢p(x; — )]
ot

X (2) = —Erp[¢/(z; — 1)) (2)

exists and o*(t) = Ep[v?(z; — t)] is continuous in a neighborhood around 0.
Also suppose Ep[i*(x;)] < oo and E[Y'(z;)] > 0. Then

T, eargngn{;p(xi—@}

) Tn)



satisfies

d ]EFWQ(JUZ)] )
% (0,55
Note that in Corollary [I, the assumption that p is symmetric and F
has a symmetric distribution implies that Eg[t¢)(z;)] = 0, since 9 is an odd
function. Thus, we can plug to = 0 into Theorem [2
In particular, we can apply the preceding results to derive asymptotic
normality of the sample mean (¢ (¢t) = t) and sample median (¢ (t) = sign(t)).
Due to non-differentiability, we have to use Theorem [2] in the case of the
median.

3.6 Contaminated distributions

Now we will consider e-neighborhoods. Suppose p(t) = % and F'= (1—¢e)®+
eH, where H is the cdf of a symmetric distribution satisfying conditions of
Corollary [1] (from here on, assume we are restricting our attention to such
nice distributions). Then

]EF [$2]

A(T,F) = IEF[l]iQ = (1 —¢) + eEglz].

Clearly, this can be arbitrarily large.
On the other hand, suppose we have a function ¢ such that ¢/’ > 0 and
||loo < k for some constant k. Then

Ep(?(x)] (1= B[ ()] + B 1) (2:)]

BV P (1 - OBolu(a0)] + Bule?(z)])’
(1 — B[ ()] + ek?
(1 —€)?Eg[¢) ()]

which is bounded as H ranges over different cdfs. One example of such a
function is 1 corresponding to the Huber loss:

o(6) = {% if [t <k,

Kt — & if [t > k.

<

(3)

Then v (t) = min{k, max(—k,t)}. For such a v, the upper bound in inequal-
ity is achieved when H puts all mass outside the interval [k, k|, since
Y'(x) = 0 and ¢?(x) = k at such points.
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We could in theory try to minimize the upper bound with respect to
k. In fact, the optimal value of k will correspond to the solution to

2¢(k) _ ¢
F = @)

and the asymptotic variance bound is achieved when (1 — €)® + ¢ H has pdf
1—e¢

Nor exp(—p(z)).

(The equation ({4)) is actually a little hard to show directly from taking deriva-
tives of the right-hand expression in inequality , but fortunately we will
derive the optimal value of k in another manner later on.)

3.7 Optimality of Huber loss

We now prove that the Huber estimator is actually minimax over all possi-
ble ¢). The following result gives a constructive method for determining a
saddlepoint solution to the minimax problem.

In fact, a much more general result holds for the minimax variance prob-
lem:

Theorem 3. Suppose G is the cdf of a symmetric distribution with twice
continuously differentiable pdf g, such that —logg is convex (i.e., g is log-
concave).

(i) Then V (¢, F) has a saddlepoint: there exists Fy € P.(G) and ¢y € ¥
such that

. V(tho, F) = V (¢, Fo) = 11})161\11} V(i Fy). (5)

Hence,

i Vi, F)=V F
I”L/?GI\II}FIEH’P%?G) (¢7 ) (¢07 0)7

and Yy s minimax optimal.

(ii) Furthermore, we have the explicit expressions

_fo

@ZJO = f07



and
(1 —€)g(zo)eF@==0)  if 2 < 0,

fo(z) =< (1 —€)g(x), if xog < x < 1, (6)
(1= e)g(mr)e M=) if o >,

where xy < x1 are the endpoints of the interval where % < k (either
or both endpoints may be infinity), and k is related to € by

= [ tagae 000 @

Zo

The proof essentially proceeds by giving a constructive solution to the
saddlepoint problem.
We have seen the special case when g(z) = ¢(z). Then

2
- —T exp <—%>

o)~ Few(=5)

Q\

—~
8

SN—
E‘H
3

implying that the xg = —k and x; = k. Then fy(z) = (1—¢€)p(x) for || < k.
We can check that the form of f; agrees with the density provided earlier on
(—o0, —k) and (k,00), as well:

fo(@) = (1 — (k) exp(—k(z — k) = (1 — ) exp (—%) exp(—k + )

V2T
smor (ke g)
exp | —kx + —
2m P 2

for x > k, and po(z) = kx — % for x > k.
Furthermore, the equation relating & to € reduces to

L [ e+ 228 1 e + 220,

=(1—¢

which is again equation (4)), which identifies the optimal parameter for Hu-
ber’s M-estimator.

Exercise. What is the minimax optimal solution when G is the cdf of a
N(0,02) distribution?
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Solution: We need to substitute g(z) = ——— exp <—%> Then

2wo
@) _
glz) o’
so £9 = —ko? and x; = ko?. Then

(1 —€)g(xo) exp(k(x —xg)) = (1 —¢) \/21_770 exp (— k2202> exp(k(z + ko?))

(1—¢) ! e (k: + k202>
=(1—¢ X x ,
V2o P 2

so the form of the density is

(1—e)ﬁexp kx + kQQ"Q) . ifr < —ko?,
fo(x) = ¢ (1 — e)ﬁ exp —%) , if || < ko?,
(1-— e)ﬁ exp ( —kz + k2‘72> , if x> ko

2

This means
—k, if x < —ko?,
o(z) = =%, if 2] < ko?,
k, if > ko?.

Furthermore, the value of k corresponds to the solution of the equation

[ e (i) TS
= ——exXp | —=— | dx .
2

1—e¢ _ko? V2O o2 k

We can easily see that when ¢ = 1, we obtain the same expressions for
the Huber estimator derived earlier.

Remark. How much further can we push this theory? Let us consider the
minimaz variance problem when PX(®) = {F : sup, |F(t)—®(t)| < €}. Recall
that the e-neighborhood we have been considering satisfies P(®) C PX(®).
A rather sophisticated and ingenious construction due to Huber leads to a
density of the form

Oy cos? (%) , if 0 < o < x,
fo(z) = fo(—=2) = < ¢(z), if 1o <@ <y,
Crexp(=A(z —x1)), ifx> x,
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with corresponding v function

wtan(%), if 0 < x < x,
U(z) = ( if 1o < w < 1,
)\, fo > .

(The shape of p is that it takes the form log(cos®(z)) = 2% + %4 + O(2°) in
an interval around 0, then becomes quadratic, then becomes linear.)

4 Hampel’s perspective

What have we learned so far? Huber loss is minimax optimal in an e-
neighborhood of ®. However, derivation relied heavily on nice form of normal
density and symmetric contamination assumption. How can we “robustify”
other estimation procedures?

We now discuss a second camp of robustness theory, developed by Ham-
pel (1968) in his PhD thesis: “Contributions to the theory of robust estima-
tion.” Basic concepts are qualitative robustness (continuity of limiting func-
tional), influence function (effect of infinitesimal perturbations), and break-
down point (distance to nearest singularity /asymptote).

Estimate T }

Extrapolation
using influence
function

Actual value

Model distribution Fy

0 Contamination
Breakdown
point

Figure 2. Extrapolation of a functional (esti ), using the infinitesimal approach. (Sym-
bolic, using the analogue of an ordinary one-dimensional function.)

4.1 Influence functions

We will again assume we have a sequence of estimators T,,(x1,...,2,) KR
T(F) when z; ~ F. In order to be robust, we want some stability: 7" should
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be continuous and the derivative should be well-behaved.

Definition. The influence function IF(;T,F) : R — R of a functional T
at F is given by

IF(z;T, F) := lim T =)F +tA.) = T(F)
t—0 t

Influence function provides rate of change of T'(F') in direction of point
mass A;. In particular, we will be interested in bounding quantities such as
gross-error sensitivity

V(T,F) :=sup [[F(z; T, F)|
(analog of bounded derivative). Other quantities of interest include the re-
jection point
p*(T,F):=inf{r >0:IF(z;T,F) =0 when |z| > r}.
Furthermore, the influence function is related to the asymptotic variance

of T,,: It can be shown under appropriate regularity conditions that when

i.1.d.
r; ~ F, we have

VT, — T(F)) ~ % Zn: [F(z; T, F) % N(0, A(T, F)),

where A(T, F) = [IF(x;T, F)*dF(z).
Example.

e (Mean) We have

IF(x; T, F) = lim (1= OEp[2] + tz) — Ep[zi]

t—0 t =z —Ep [xl]’

so when Eplz;] =0 (e.g., F' corresponds to a symmetric distribution),
IF(z;T,F) = x. Recall that under the same condition Eg[z;] = 0 (i.e.,
to = 0 in the earlier notation), we proved that

Via(T, — T(F)) % N(0,Ep[2?]),

= E[z?].

7

since Y(t) =t and ]EE[[:f, x)ﬁ
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e (Median) We have

FY1/2) = F~Y1/2
IF(2z;T,F) = lim — (1/2) (1/ ),
t—0 t

where Fy := (1—t)F+tA,. It is easier to deal with an implicit equation.

Note that . .
i (r (5)) -7

and the LHS can also be written as (1— (Ft ! (%)) +tA, (Ft_1 (%))
Differentiating with respect to t, we have
1
a ( )

o Q) (o ()
(@) () ()0

Fvaluating at t = 0 (and using the fact that Al (y) =0 for x #y), we

have
_%-%F”<F1(%)>IF@;TJU—%Ax(F‘1(%))==Q

| /2= AL(FTN1/2)  1/2—-1{F(1/2) > x}
[F(J;',T,F) = F,<F_1(1/2>> - F/(F—l(l/Q))

N | — §:|Q.

SO

It is not hard to see that this is equal to % Recall that in
our earlier results on asymptotic normality, we had

d 1
T,—-T)— N|0,———
A=) =2 ¥ (030
for symmetm’c distributions (and in fact, we have the asymptotic vari-
ance W for general distributions when we take to = F~(1/2)).

Thus, we again have the formula A(T, F) = [ IF(x; T, F)*dF(x) in the
case of the median. Note that the inﬂuence function looks a lot like 1. . .
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f(F (p))
Figure 20.1. Influence function of the pth quantile.

(Note that the derivation above is not exactly rigorous, but these sorts
of back-of-the-envelope derivations are often correct, and can be made
rigorous under enough reqularity assumptions.)

o (General M-estimators) Recall that T'(F') is defined by
Elt (s — T(F))] = 0.
Using an implicit approach, we can show that
Yz —T(F))
Ep[y/(z; = T(F))]

In particular, recall the formula for the asymptotic variance of “nice”
M -estimators: )

(Ep[y (z:)])*

when F' is the cdf of a symmetric random variable, which is exactly
[IF(z,T, F)*dF(x). Furthermore, these computations show that in
order to obtain a bounded-influence estimator, we can use an M -estimator

with 1 bounded.

IF(x;T,F) =

AT, F) =

4.2 Optimal B-robust estimators

The formula stated above for the influence function of an M-estimator is actu-
ally somewhat more general. Consider a family of distributions parametrized
by 0, and suppose the functional T'(Fy) is defined implicitly by

[t TR =0
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(the special case of M-estimators is a family of distributions with location
parameter 0, and (y,0) = ¥(y — 0)—we will also consider scale families
later). One can show that

¢($ T(Fe))
TR T ) = 5 0) (9, 8)dFo(y)
where 5 5 )
L _ aato\Y
s(y,0) :== %(bgfg(y)) = %

is the score function.

4.2.1 Main result

The following result concerns optimality of estimators. We are interested in
the minimal asymptotic variance [ IF(z;T, F)*dF(z), subject to an upper
bound on the gross error sensitivity v*(T', F') = sup, [ F(z; T, F')|.

Theorem 4. Suppose F = Fy (for a fived ) and

I(F) = / sz, 0)2dF(z) > 0

(this is the Fisher information). Let b > 0 be a constant. Then there exists
a real number a such that

U(y) = [s(y.0) — al’,

(truncated functzon which becomes constant outside of [—b, b]) satisfies J D(y)dF (y)
0 and d = f@/} L0)dF(y) > 0. Furthermore, ¥ minimizes

[ rwrprar
among all mappings ¢ satisfying
(i) f@b(y)dF(y) =0,

(it) [ ¢(y)s(y,0)dF (y) # 0,
(i1i) and

\Q*
~
=
IA
o
I
|
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Any other solution to this optimization problem coincides with a nonzero
multiple of 1, almost everywhere with respect to F'.

Remark. The condition [(y)dF(y) =0 is known as “Fisher consistency”:
for location M -estimators, we have Vy(y) = (y — 0), so this is the familiar
condition Eg, [¢(x; — 0)] = 0.

We call estimators that minimize the asymptotic variance subject to a
bound on gross error sensitivity optimal B-robust estimators. (The B stands
for “bias,” whereas there are also V-robust estimators.) We call any estimator
such that v*(7T', F) < oo B-robust.

4.2.2 Location M-estimators

Consider the family of M-estimators for location. Then

S(5.0) = wlo) _mfly—0) _ —f'(y—0)
’ fo(y) fly—0) fly—0)

By Theorem [4] the optimal B-robust estimator at § = 0 is given by
~ ) 7
do = | -d] .
f(y) —b
Hence, the optimal (finite-sample) B-robust estimator is the solution to

2 s

i=1

(finite-sample version).
In particular, if the density f is symmetric around 0, then s(y,0) = _f(s’)

is an odd function. It follows that [[s(y,0)]”,dF(y) = 0, so a = 0, implying
~ Lo 1b
that ¥ (y) = [_f (y)} . If F = @, this reduces to the Huber estimator with
b

fw)
parameter b: J(y) = [y]®,, which is the familiar Huber ¢ function. Hence,
the Huber estimator also emerges as the optimal M-estimator for the location
of a normal family, this time with respect to B-robustness. (Different Huber
parameters correspond to different bounds on the GES.)
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4.2.3 Scale M-estimators

We can also consider a family of distributions parametrized by scale:

1,/
folw) =4 f (5> :
(For instance, consider the N(0,6?) family, where # is unknown. Then

fo(z) = ﬁ exp (;T“”f))
The M-estimator corresponds to solving [ ¢ (x,8)dFp(x) = 0, where 1 is

a function such that ¢(z,0) = (%) (We can easily check that if f, takes
the form above, the MLE will Correspond/ to such an M-estimator for an
appropriately defined choice of 1(u) = —“ff—(”) -1

u)
What is an optimal B-robust estimator% We have

_whew) 5 (5) (&) — = f (§)
S(y7 9) - - 1 Y *
fo(y) if (%)
If we substitute # = 1, we obtain s(y,1) = %;f)y) —
B-robust estimator, according to the theorem, is

1. Hence, the optimal

When F' = ®, this becomes

hily) =y —1-a’,

for an appropriate value of a, which generally depends on b.
The (finite-sample) optimal B-robust M-estimator then corresponds to

21 -1,

(truncation of MLE expression, above or below, depending on the value of
b).
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5 Robust linear regression

Analysis of multidimensional estimators becomes a bit more complicated.
However, the results from the univariate case translate conveniently (in some
cases) into the context of linear regression.

Model: )
:inj0j+ui7 Vlglgn,

. . . ivid. iid.
or in matrix notation, y = X0 4+ u. Assume z; ~ K and u; ~ G,, where

u;’s are independent of x;’s and o is scale parameter of error distribution.
Then joint distribution is

foule,) = 1) Fule) = k(a) -~ (M) |

o
MLE would correspond to maximizing
" 1 [y, —al0
[Tk o (255,
paley o o

or equivalently, maximizing

Sonfin (519}

In the case when G, is cdf of N(0,0?), we have g(t) = J%?exp (—ﬁ>, SO
MLE (for parameter 0) is

or

(ordinary least squares).
Not surprisingly, OLS is not robust to deviations from normality of the
error distribution G. We can see this by computing an influence function
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IF(z,y; T, F) (see below). Inspired by the MLE formulation (8)), consider
an M-estimator with a general loss function p:

mam;p(% ) 9)

(assume for now that o is known, or is a nuisance parameter). Then we have
the estimating equation

Z¢ —xl0)z; = 0.

5.1 Influence functions

Suppose F' = Fy. Functional T'(F) is a vector that solves

0 = By, o[y — 27 T(F))i] = / by — £ T(F))xdF (z,y).

It can be shown that

¥ i T.F) = ([0 = TN dF @) (0l = A T(F)e0)
= M " (yo — xd T(F))o.

By independence, we have

M = / Y (u)dG (u) - ( / :UdeK(x)) :

If we write yo = ] T(F) + 1o, we can think of the influence function as being
broken into two factors:

ITF(20,y0; T, F) = %'((E%K[m’xﬁ)_l x0> =IR(ro;T,G)-IP(zo; T, K),

where IR is the influence of the residual and IP is the influence of the
position. In particular, if we can guarantee boundedness of I F in response
direction if ¢ is bounded. (This is not the case for OLS.)
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5.2 Optimality

Can we derive analogs of Huber’s and Hampel’s theories of optimality for
robust regression estimators? Yes. The first step is to derive asymptotic
normality results for solutions to estimating equations, and then minimize
variance term (note that this is now a matrix).

5.2.1 Asymptotic normality

Huber (1973) analyzed M-estimator (9), for convex p, in fixed design setting,
and derived asymptotic normality under suitable regularity conditions, in
the regime %3 — 0. What should the limiting variance be? When p — oo,
we have to be a bit careful, since the estimate 6 is a vector of growing
dimensionality; so Huber showed asymptotic normality of projections aTG
where a € RP is a fixed vector of contrasts.

Maronna & Yohai (1981) analyzed the setting we have described, with
fixed p and where n — 0o, showing that asymptotic covariance matrix is

V(T,F) = /IF z,y; T, FYIF(x,y; T, F))TdF (z,y)

Mt (/¢ — T ))mdeF(x,y)> Mt
M (/¢ )dG (u ) (/deK(a;)> M1
— (MQ; i)) (/ deK(a;))_ :

In particular, minimizing V' (7T, F') over the class of ¢ functions then reduces
2

to the familiar univariate problem of choosing ) to minimize %—in

the case when G = ®, we again recover the Huber M-estimator as being

minimax optimal in terms of variance.

5.2.2 B-robustness

Hampel’s theory is a bit more complicated, due to the fact that we have to
extract real-valued measures from vectors and matrices. For instance, we can
derive gross error sensitivity

(T, F) =sup |[IF(x,y; T, F)||2.

x?y
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Can show parallels of univariate location estimation theory for monotone v
functions.
However, for the family of M-estimators we have studied,

v (T, Fy) = sup {Iz/)(y — $T9)| : ||M_1x||2} = 0.
€,y

Hence, optimality theory focuses on slightly broader class of M-estimators

defined by
Etoiager [0(@) - 0 (i — I T(F) - (@) 2] =0 (10)
Using same IF calculation above, we can compute
1P (20,0, T, F) = w(zo) (30 — 25 T(F)) - o)) Mo,

where M is an appropriately defined population-level matrix. In particular,
if w(x)z is a bounded function of z (e.g., w(x) = m) and v is bounded,
we can guarantee that v*(T, Fp) < oo.
In the radially symmetric case, the optimal B-robust estimator corre-
sponds to the Hampel-Krasker estimator, given by equation with v(z) =
1

Azl = =@ Where ¢ is equal to the Huber function.

5.3 Unknown scale

So far, we have ignored the question of estimating the scale parameter o.
Back to the MLE when z; 4K and U; i G5, we want to maximize

[1{k0- 20 (2529) .

)

n T
. yi —x; 0
min El (p (T) + log a) ,

where p = —logg. If p is quadratic, we can ignore 0. However, if p is not
quadratic, e.g., Huber loss, fixing a value of ¢ and minimizing only over 6
could lead to different robustness properties (i.e., potentially large loss in
efficiency) if the value of o is chosen poorly. This is a much harder problem,
and the theory is far from complete. We will mention a few different methods
that have been proposed in robust statistics literature:

or
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(a) Joint estimation: We could try to jointly optimize the objective with
respect to (0,0). However, even if p is convex, the objective function
is generally nonconvex.

A clever idea (introduced by Huber) is to jointly optimize

man( ( — 0)—1—@) ’, (11)

where a € R is an appropriately chosen constant to make the resulting
estimators consistent. In particular, this function is jointly convex in
(0, 0) when p is convex.

The estimating equations corresponding to equation take the form (77),

with

Note that if p is an even function and distribution of u; is symmetric,

we have 14
()]
o

but we need to include the constant a to ensure that

o[ (2) -0 () ] -0
o o o
In particular, the value of a should be set according to the distribution

with which we want our method to be robust. (However, this depends
on exact knowledge of G.)

A drawback of this method is that using nonconvex p may lead to
more desirable properties from the point of view of robustness (i.e.,
high breakdown point, finite rejection point).

(b) M M-estimators: Introduced by Yohai (1987). Procedure is as follows:

1. Compute initial consistent estimate 6y (c.g., using OLS or LAD).

2. Compute robust scale estimate & based on {y; — z76}", (e.g.,
using M-estimator of scale).

T
3. Minimize > )"  p (yl = > with respect to 6.

23



Much of theory focuses on obtaining estimators with high BP and
bounded IF. Asymptotic theory depends on assumption that o is suf-
ficiently close to true scale parameter.

(c) Least trimmed squares (LTS): Introduced by Rousseeuw (1984). Opti-

mize
[on]
Z(T(Q))%z)a
i=1
where 7;(#) = y; — 27'0. However, the objective function is highly

nonconvex, and theoretical properties of optimum are largely unknown.
Output can also be used to obtain initial scale estimate o for M M-
estimation algorithm.

6 Hypothesis testing

6.1 Huber theory
Reference: Huber & Strassen (1973)
iid.

Suppose Py # P, are two distributions, and we have i.i.d. samples x; ~
P. Our goal is to test the hypotheses

Hy: PeP(Py):=Py vs. H :PeP(P):="TP.

6.1.1 Optimality theory

We wish to find the “maximin” test: For a fixed level «, maximize the
minimum power subject to an upper bound on the level:

sup inf Ep[p(X)] s.t.  sup Ep[p(X)] < a,
o PeP PePy

where ¢(X) € {0,1} defines the test.

The main result is that for sufficiently small €, the optimal test ¢* is
actually a likelihood ratio test between two “least favorable” distributions
Qo € Py and Q1 € P;. In particular, for j € {0,1}, we have

P (@ (X) # j) < Pg,(¢"(X) # ) for all Q) € P;.

Note that it is a non-asymptotic result, and provides the form of a maximin
test for any value of n (and any value of €):
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Theorem 5. Suppose Py and P, have densities pg and py, respectively. Let

1— r) if @) o b,
go() = (1_5 ol " <
(@) i o) 2

1—ée)p(x p@) a,
wie) =0
a(l —e)po(z) if Z55 < a.
For any e € (0,1), there exist unique a < b such that qy and g, are valid pdfs.

Furthermore, the respective distributions are in Py and Py. If € is sufficiently
small, a mazximin test is given by

o, .

for an appropriate value of c.

Note that if we define r(x) = x) then

(2) a, if r(z) <a,
Zé(x) =qr(x), ifa<r(z) <
b, if r(xz) > 0.

Hence, the probability ratio test between Py and P is replaced with a cen-
sored version.

Example. Suppose Py = N(6y,1) and P, = N(64,1), with 6y < 6,. The
usual LRT would consist of rejecting Hy when Y., x; > c. Instead, the
censored LRT rejects Hy when Y [x;]% > .

6.1.2 Connections to differential privacy

Definition. A randomized algorithm T taking inputs in X* and returning
outputs in a space with events set S satisfies e-DP if, for all neighboring data
sets x,x’ € X™, and all events S € S, we have

P(T(z) € S) < eP(T(x') € 5).
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Private hypothesis testing: Suppose x1, ..., x, are drawn i.i.d. from either
P or (). What is the minimum number of samples needed for an e-DP test
to reliably distinguish P from (), and what are optimal private tests?

Canonne et al., “The structure of optimal private tests for simple hypoth-
esis testing,” STOC 2019, proposed a “clamped log-likelihood ratio test” and
showed it is optimal up to constant factors:

n

100 - 33 s 5]+ 100 (5

=1 a

for an appropriate choice of (a,b), where we reject Hy : z; ~ P if T(X) < 0.

This result was derived entirely independently of the robust statistics
literature, although those who work in this area may not be surprised that
a robust estimator can be used to construct a private estimator, e.g.:

e Dwork & Lei, STOC 2009
e Georgiev & Hopkins, NeurIPS 2022
e Asi, Ullman & Zakynthinou, ICML 2023

6.2 Hampel theory

Suppose we are interested in performing a parametric hypothesis test of the
form

HO 0= 80
Hy: 0>6, (ortwo-sided version),

based on a test statistic T),(x1, ..., z,). We will suppose that
To(x1,. .. 10) o T(F),
iid.
when z; ~" F.

6.2.1 Influence function of test

Recall that our discussion of Hampel’s optimality theory used the fact that
our functionals were Fisher consistent: T'(Fy) = 6. However, test statistics
may not be Fisher consistent (e.g., test of variance for the N (0, 0?) family is
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a x2-test based on sample variance, but scale parameter is o). Accordingly,
we define a map £ : © — R such that £(0) = T'(Fp), and define the functional
U(F)=¢YT(F)), so that

U(Fp) = & H(T(Fp)) = £1(£(0)) =0

is a Fisher consistent functional. Also assume that ¢ is strictly monotone
with nonvanishing derivative, so ¢! is well-defined.

Definition. The test influence function of T at F' is defined by
IFyeq(x; T, F) = 1F(x; U, F).

Note that

d
Iﬂest(x; T; F@) = EU(Ft)

d,. 4
:%5 (T(Ft)) )

where F; = (1 —t)Fy + tA,, so using the chain rule, we have

0T 3) = (€ (00 GT ), = sy TP T
1
= 5/(9) . [F(ZE,T, Fe).

_ Also note that if we replace the statistic T'(F') by any other statistic
T(F) =n(T(F)), where 1 is monotonic transformation, the functional U(F’)
will remain the same, since £(6) = T'(Fy) = n(T'(Fy)) = n(&(0)), so £ =nok,
and

U(F) =& H(T(F)) = ¢ (0 (T(F)) = & (T(F)) = U(F).

6.2.2 Level and power

We are interested in both:

e Robustness of validity: Stability of level of test under small deviations
from null hypothesis.

e Robustness of efficiency: Stability of power of test under small devia-
tions from alternative hypothesis.
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We will study the influence of distributional deviations on the asymptotic
level and power of tests. Accordingly, let 0, = 6y + \/Aﬁ, where A > 0 is a
constant. The asymptotic level of the test is

a(U, F) = lim Py, (U, > kn(a)),

n—o0

where k,(«) is the critical threshold. (Thus, a(U, F) = «.) Here, U, =
& 1(T,). Similarly, the asymptotic power is defined as

B(U, F) = 1i_>m Py, (Up > k(). (12)
We now introduce perturbations. Define

FP = (1 —t,)Fy, +ty,,

n,t,r
Fry = (1= t,)Fp + taA\y,
where ¢, = -=. (We require the fraction of contamination to be converg-

ing to 0, since otherwise the difference between Fy, and Fpy, would become
negligible, and the two cdfs would converge together.)
We will study the level influence function

LIF(z;U, F) := lim %an

n—o0

9

where L, ;. = FF,

(U, > ky(«)), and the power influence function

where P, ¢, = F,f t2(Un > kp(a)). It turns out that these influence functions

are both multiples of [ Fieg(x; T, F'):
Theorem 6.
LIF(2;U F) = \/E(T, F)p(A_o)I Fyest(x; T, F),
PIF(x;U, F,A) = /E(T, F)y (Al,a . A\/m) [Fpg(a; T, F),

where A\i_q is the lower-(1 — «) quantile of the standard normal distribution,
(1 —a), and E(T,F) := ([ IF2,(y; T, Fy,)dFy, (y))_1 is the asymptotic
efficacy of the test. (Note that (U, F) =1—® ()\1_& — AW), hence
the terminology for asymptotic efficacy.)
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Thus, ensuring robustness of validity corresponds to bounding the LIF,
whereas ensuring robustness of efficiency corresponds to bounding the PIF'.
Optimality theory concerns maximizing the asymptotic power of a test ,
subject to bounds on LIF and PIF. Can also be recast as minimizing
asymptotic variance of T' subject to an upper bound on the absolute value
of the self-standardized influence \/ E(T, F)I Fiest(x; T, F).

Gives rise to tests based on truncated test statistics, censored likelihood
ratio tests, etc.

7 Adversarial contamination

7.1 Setup

Huber’s contamination model (which is also the framework for Hampel’s
theory on infinitesimal robustness) assumes that contaminated data come
from an i.i.d. mixture (1 — €)F + eH. However, what if we instead draw n
i.i.d. data points {z;}"; from F, and then arbitrarily contaminate en data
points to obtain the final set {7;}; of observations?

We will work in the (nonasymptotic) probably approximately correct
(PAC) framework. For a given § > 0, goal is to obtain an estimator fi(z1, . .., Z,)
of distribution mean p = Ep[z;] satisfying

B (i — plls < t(n,5,6)) = 1 -4,

where t(n, d,€) is as small as possible. Clearly, all of the asymptotic theory
and theory of robustness based on IF's is no longer applicable, since adversary
is more powerful than Huber contamination model. Of course, the sample
mean fails catastrophically in this framework: Since the adversary is omni-
scient and allowed to base the corrupted data on the other data points, if
€ > L can always choose Z, such that || — pl|» is deterministically larger
than any value.

Are medians any better? Yes!-—and optimal. We establish the following
lower bound on the error in 1 dimension:

Theorem 7. Let F,, = N(u,1), and suppose § < c. Any location estimator
[t must satisfy

log(1
sup P, (Suplﬁ(fh-.-,fn) —pul>C <e—i— —Oggl/é))) > 6,

HER {Z:}
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where the probability is taken with respect to x; i F,, and {z;}}_, are an

(adversarial) e-perturbation of {ZT;}1 ;.

Proof. We consider two cases, where € < 4/ log(i/d) and € > \/M. In the

first case, the bound is implied by the fact that the empirical mean satisfies

N 1 [log(1/6
PM<|;L(Q71,...,3:”)—;L|>§ %>>5

when ¢ is sufficiently small, which comes from a Gaussian tail bound and the
fact that the empirical mean is the best possible estimator for clean data—
the adversary can just do nothing. So suppose we are in the second case; we
will show that

DN | —

supP, | sup |i(z1, ..., z,) —p| > Ce | >
HER {Z:}

In fact, we will show that a similar lower bound holds under Huber’s e-
contamination model:

sup sup P (e, ) — ] > C) 2
HER FEP(F,)

DO | —

This implies the result for the adversary, since adversarial contamination is
stronger than Huber contamination (and the existence of a stochastic con-
tamination model which probabilistically chooses en of the data points and
incurs a certain error implies existence of an adversarial contamination model
which incurs at least the same error, as well).

The key idea is that if 11 — o = €, then we can construct G € P.(F),,) N
P.(F,,). Assuming this construction, we can write

~ €

sup sup P ([, ) =l > 5)
HER FEP(F,) ™

1

> _

1

2

1 N € N €
e (= S0 5)

1

1
> 5P g (I — o 2 €) = 3,

completing the proof. O

30

~ € ~
P oo (m(xl, @) — | > 5) + 5P g (\,u(a:l, ) — o] >

€

2

)



For an upper bound result, see the much more general result in Theorem
below.

7.2 Higher dimensions

What to do in d > 1 dimensions? This is a bit subtle, due to a multiplicity of
higher-dimensional versions of the median, of which several give suboptimal
rates.

The simplest idea is to use the coordinatewise median. However, this can

be shown to incur an O(ev/d) error. In contrast, we can derive a O (e + \/g)

error using more complicated notions of medians.

Definition. The Tukey median of a data set {x;}} | is defined as i =
arg max,,cga D(pt, {x;}j=,), where

Dp {wifin) = ] ”_WZ {u" (@ = p) = 0}

1s the Tukey depth function.

In other words, the Tukey depth at u looks at all halfspaces cutting the
recentered data set, and takes the one which cuts off the fewest points. The
Tukey median then seeks to maximize this depth over all u.

We have the following upper bound:

Theorem 8. Suppose F' = N(u, 1;), the contamination level satisfies € < %,
and the sample size is large enough so 2C/ %(1/6) < ;11. The Tukey median

satisfies

t(n,8,¢) < ®! <% +2e+42C d+lo—g(1/5)> :
n

(Here, C' > 0 is a universal constant not necessarily agreeing with the
one appearing in the earlier theorem.) This bound turns out to be minimax
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optimal (up to constants) for small € and large n when F' = N(u, I,;):

o (% +2¢ + 2C —dHOS(l/‘S))
cot (M) L (s d + log(1/9)
=+ (3)* s (2 M )
1, d 1 log(1/9)
- <2 + 20y 1e/?) )

(compare with the lower bound rate in Theorem [7|in the 1D case).

Sketch of proof. We begin with a statement about the clean data, which
follows from standard uniform concentration results from empirical process
theory (e.g., using arguments based on VC dimension):

n

1
. Z 1 {uT(xl - 7]) > O} - ]P)xiNN(MJd) (uT(x” o 77) = O)

d+ 1og(1/5)) s

P iia sup
XTq ~ N(:uvld) ”u”Q:LneRd

>C

=1
o n
For the remainder of the argument, suppose we are in the “good” event

with probability 1 — d, where all empirical depth measures are close to their
population-level counterparts. Furthermore, note that

PNty (W (2 — 1) > 0) =@ (u" (1 —1n)) .

We now argue that the true mean has Tukey depth at least (approxi-
mately) % — €. Note that for any unit vector u € R?, we have

Zl{uT(EEi—u)ZO}221{UT(xi—u)20}—en

i=1

Zn(w)_o M_€>
_ (1_6_0 d+log(1/5))n
2 n ’



where the second inequality follows from the fact that we are in the good
event.
On the other hand, we can show that any point n € R? such that

1 d + log(1/3 1 d + log(1/6
In—pllz > @~ <§+2e+20 #) _ g (5_26_20 +log(1/ ))

n

must have

~n 1 d+log(1/6
D(n>{$i}z‘:1)<§—€—0 #

Since the Tukey median maximizes the depth function, the result of the

theorem will then hold. Indeed, suppose 7 is a far away point and let v =

—I—£_  Then
[ln—pel|2

n

Zl{vT(@—n)ZO}§Zl{vT(a7i—n)ZO}+en

=1

<n <q><—un C ) +e+C Lg(””)

n
) ((1 o d+10g(1/5)) e d+log(1/5)>
2 n n
1
) <_ e d+10g(1/5)> .
2 n
This proves the desired result. [

However, computing the Tukey median is also difficult in high dimensions,
with computational complexity O(n?=1).
7.3 Spectral algorithms

We now discuss algorithmic alternatives which can overcome the O(n!)
computational complexity of the Tukey median and are also provably (nearly)
optimal.

33



7.3.1 First algorithm

The first algorithm, due to Diakonikolas et al. Its success is roughly based on
the intuition that outliers (measured in terms of their impact on the sample
mean) can be detected based on the sample covariance. Here is the algorithm:

The algorithm proceeds by assigning weights {w; }; to the data points.
The final output is the weighted mean p(w) = Y | w;x;, for an iteratively
determined vector of weights.

1. Define w§°) = L for all 4.

2. Fort =0,1,2,..., compute () = 3" wlgt) (25— p(w)) (2;—p(w®))T.
(8) T[Sy < €, output fi = a(w®),
(b) If [X®]]; > C, define scores

7 = 0, 2 — p(w®))?

)

(t+1) _

where v® is the top eigenvector of £). For each i, define w

(%)
7 () ) _ (t)
(1 — TI(};X) w; ', where Tmax = max, @7 -

Thus, the second step effectively filters out one (or more) data points at a
time.

The scores are defined as 7. = (v®, X; — p(w®))2, where v® is the top
eigenvector of the weighted sample covariance ) = E(w(t)). The initial
weights w(®) are uniform over S, and the weighted mean and covariance are
defined as pu(w) = >, wiz; and L(w) = > wi(z; — p(w))(z; — p(w))”. The
1D filter algorithm takes as input two vectors (7, w) and outputs the vector

Ti

w;, where Ty = MaX.,>oT;, and

Tmax

with component i equal to (1 —

effectively truncates one (or more) components at a time.
In the contaminated Gaussian setting, error bounds are of the form

O(ey/log(1/e€)). Sample complexity is n = 2(dlog d).

7.3.2 Second algorithm

We now introduce an algorithm due to Lai, Rao, and Vempala (2016). They
consider an additive adversarial model (see Examples sheet for the difference
between this and the strong adversarial contamination model considered ear-
lier): (1 — €)n points are drawn i.i.d., and then en are chosen adversarially.
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The idea is that we only need to figure out which direction in d-dimensional
space has been affected by contamination, and estimate this direction ro-
bustly (e.g., using a median). The algorithm is described in a recursive
manner.

Algorithm 3: AGNOSTICMEAN(S)

Input: S C R", and a routine OUTLIERREMOVAL(:).
Qutput: € R™.

1. Let (S, w) = OUTLIERREMOVAL(S) .
2. ifn=1

(a) if w = —1, Return median(S). //Gaussian case

(b) else Return mean(S). //General case

3. Let Xg = be the weighted covariance matrix of S with weights w, and V be the span of
the top n/2 principal components of £z, and W be its complement.

S,w?
4. Set Sy := Py (S) where Py is the projection operation on to V.
5. Let fiy := AGNOSTICMEAN(S)) and fiy, := mean(Pyy S).
6. Let &t € R™ be such that Py i = iy and Pw i = Ly

7. Return p.

7.3.3 Linear regression with adversarial contamination

Consider n i.i.d. observations from the linear model
yi =, B* + z,

where z;’s are zero-mean, identity covariance, and z;’s are independent, zero-
mean noise. We observe a contaminated dataset, where up to en points are
arbitrarily corrupted, in covariates and/or responses.
Previous/concurrent approaches: Methods based on sum-of-squares
algorithms or iterative robust gradient descent.
Pensia, Jog & Loh, 2020: Apply filtering step to the covariates. Then
apply Huber regression.
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8 Heavy-tailed distributions

Interestingly enough, the same types of estimators described earlier for ad-
versarial contamination can also be used for optimal estimation, with high
probability, when we have i.i.d. data drawn from heavy-tailed distributions.
Going back to our PAC framework, we want to find an estimator which
achieves the minimal function t(n, ) in the bound

Pl = plla < t(n,6)) =1 =4,

where the probability holds for ii.d. data {z;}?, drawn from an appro-
priate class of distributions. (Here, we no longer have e since there is no
contamination—though of course, one could introduce contamination on top
of the more general distributional assumptions.) If z; ~ N(u,0?), we can

take t(n,0) = Coy/ W, and the bound is tight.

What if we consider classes of distributions which only satisfy the con-
dition that the variance is bounded by ¢?? How can we estimate p with
optimal rates? In 1 dimension, note that Chebyshev’s inequality guarantees

that the mean satisfies
1
< — ] >1-9
f5)-

1 n
P(Eizlxi—,u

(and the bound can also be shown to be tight, e.g., when z; is drawn from
a distribution which is supported on {—a,0,a}). But this rate (n,0) is far
worse than the rate of Gaussian variables when ¢ is small.

To provide a flavor of existing results in this area, we state results for two
estimators, and provide proof details for the bounds in 1 dimension. Similar
types of results hold for estimators based on filtering and trimmed mean
techniques, with subtle differences between the assumptions needed for the
bounds to hold (and be optimal).

8.1 MOM estimator

Suppose for simplicity that n = mk for some integer m. We have the follow-
ing result:
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Theorem 9. Suppose {xz;}I, are drawn i.i.d. from a distribution with mean
w and variance o*. Then the MOM estimator with k = [8log(1/8)] satisfies

4(8log(1/5ﬂ) S

n

PQﬁ—MSU

Proof. We will show that

P (Iﬁ— pl < a\/%) > 1 —exp(—Fk/8),

from which the result follows by taking k& = [8log(1/0)].
Let {z; }le denote the means within individual blocks. Applying Cheby-
shev’s inequality shows that for each j, with probability at least %, we have

4
|2 —pl < o[ —.
m

If | — p| > a\/%, then at least & of the z;’s must satisfy |z; — p| > a\/%,

1
4

P(|ﬁ—u|>a\/%) sp(yzg)

:P(Y—E(Y)z

so denoting Y ~ Binomial (k ), we have

NS

)

by standard tail bounds (i.e., Hoeffding’s inequality). O]

< exp(—k/8),

In fact, analysis of MOM estimator can be generalized to settings when
variance might not be finite, but 14 a moments exist for some a € (0, 1), etc.
Note that k£ only depends on the error probability and not any properties of
the distribution.

A bound on a multivariate version of the MOM estimator using the ge-
ometric median can be derived in a somewhat analogous manner. However,
the simple geometric median does not yield optimal error rates. MOM-based
procedures have also been derived for settings such as linear regression and,
more generally, empirical risk minimization.
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