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Inverse problems

® Goal: To recover an infinite-dimensional parameter fy from the
observation

Y = Afy + €,

with A4 a known, injective map and ¢ noise.
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Inverse problems

® Goal: To recover an infinite-dimensional parameter fy from the
observation

Y = Afy + €,

with A4 a known, injective map and ¢ noise.
* If A% is not continuous, simply inverting Y may amplify noise.
® Usual approach: Model the data with a prior I1:
f~TI
Y|f~Ps
and then analyse the posterior f | Y.

* For linear f — Af, there are good (asymptotic) results.
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Inverse problems

® Setup: We consider

Lug = c(f, ur) on O,
ur=g on €O,

with £ a linear differential operator, and ¢ : R?> - R and
g : 00 - R are known functions.
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Inverse problems

® Setup: We consider

Lug =c(f,ur) on O,
ur=g on €O,

with £ a linear differential operator, and ¢ : R?> - R and
g : 00 - R are known functions.

* We assume we can invert:
f=e(Luy, ur)

for a known map e:R? > R.

® Our approach: Put a prior on Lug,.
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Example: Schrodinger Equation
* For fy >0, consider ug the solution to the PDE

1
EAUfO = fUﬁ)

on O c R, with ug = g on 0.
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Example: Schrodinger Equation

* For fy >0, consider ug the solution to the PDE
1
EAUfO = fUﬂ)

on O c R, with ug = g on 0.
* We observe Y = ug + %e, with € Gaussian noise indexed by L?(O).

® How can we recover fy in an optimal way, and quantify the
uncertainty, as n - oo?
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Intuition

The method consists of three steps:

® Put a prior on Aug and compute the posterior using the
observations.
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Intuition

The method consists of three steps:

® Put a prior on Aug and compute the posterior using the
observations.

® Using the posterior for Aug and g, recover ug.

® Recover fy by using the structural equation coming from the PDE.
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Linearisation

® Let K be the integral operator

AK(h) =h on O;
K(h) =0 on 00.
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Linearisation

® Let K be the integral operator

AK(h) =h on O;
K(h) =0 on 00.

* Take g such that Ag =0 and g|sp = g and write

1
Y = K(AUﬂ))'l‘g"{‘ \/—EE.
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Linearisation

® Let K be the integral operator

AK(h) =h on O;
K(h) =0 on 00.

* Take g such that Ag =0 and g|sp = g and write

1
Y = K(AUﬂ))'l‘g"{‘ \/—EE.

® The problem becomes linear for Y= Y-g.
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Inversion method

* For any v € L2(0), using the boundary conditions, we can
construct a function &, = K(v) + g satisfying

AL, =v on O;
av =8 on 00.
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Inversion method

* For any v € L2(0), using the boundary conditions, we can
construct a function &, = K(v) + g satisfying

AL, =v on O;
av =8 on 00.

AUfO ~

5.~ We construct fi=2Y
Ufo

20y *

® Using the inversion fy =
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Equivalent model

* The eigenbasis h; of KTK is convenient to model the observations.
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Equivalent model

* The eigenbasis h; of KTK is convenient to model the observations.
* We observe

¢ 1
Yi = k; ,U,O,,'+—Z,',I'=1,2,...
n

NG
with

* K2 the eigenvalues of KTK;

* po,i == (Lug, hi) the coefficients of Lug, with respect to the basis;

* Zi~N(0,1) i.id.
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Prior

* Smoothness: The smoothness of Luy, is determined by the decay
of Ho,i for i — oo.
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Prior

* Smoothness: The smoothness of Luy, is determined by the decay
of Ho,i for i — oo.

* We say that € S7 if ¥, 1i2i% < oo.
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Prior

* Smoothness: The smoothness of Luy, is determined by the decay
of Ho,i for i — oo.
B oo 2283
* We say that pp e S if Y272, psi<F < oo.
® Prior: Take a Gaussian prior

pio ~ N(0,i7172%).
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Prior

* Smoothness: The smoothness of Luy, is determined by the decay
of Ho,i for i — oo.

* We say that € S7 if ¥, 1i2i% < oo.
Prior: Take a Gaussian prior

pio ~ N(0,i7172%).

We wish to match « with the unknown f.
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Adaptation

¢ Empirical Bayes: The log-likelihood of 14 given « is

oo 2
n n &0
log|1+ - Y.
Z; ( i1+2a’€i_2 Il+2a"f,'_2 +n !

N =

lh(a) =
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Adaptation

¢ Empirical Bayes: The log-likelihood of 14 given « is

n2 &0

o0
log|1+ - Y:
Z; i1+2a/€i_2 i1+2a/€i—2 +n

1

N =

lh(a) =

® The maximizer

Gup = argmax,[g,jog n)fn( )

is used as a plug-in estimator, i.e. use the prior I'Io[|o{=a{n.12
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Adaptation

¢ Empirical Bayes: The log-likelihood of 14 given « is

2
n ~
y?2

1

lh(a) =

N =

o0
> |log|1+ d -
=~ i1+2a/€i—2 i1+2a/€i—2 +n

® The maximizer

Gup = argmax,[g,jog n)fn( )

is used as a plug-in estimator, i.e. use the prior I'Io[|o{=5[n.12

* Hierarchical Bayes: We put a prior 7 on « such that
() 2 o leco,

1B. Knapik, A. van der Vaart, and H. van Zanten (2011). “Bayesian Inverse Problems with Gaussian Priors”. In: 7he
Annals of Statistics 39.5, pp. 2626—-2657. DOI: 10.1214/11-A0S920

2B. Knapik, B. Szabo, A. van der Vaart, and H. van Zanten (2015). “Bayes procedures for adaptive inference in inverse
problems for the white noise model”. n: Probability Theory and Related Fields 1643 pp. 771-813. bol
10.1007/s00440-015-0619-7
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Prior

* We now consider O =[0,1]¢.
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Prior

* We now consider O =[0,1]¢.

* The eigenfunctions and eigenvalues of K"K are

d
hi...i = 27 [T sin(ijm;),
j=1
2 __ 1
K}il,...,l'd - (Zd ] i.2)27-‘-4.
=17
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Convergence rate

Theorem

For 8> 4, let fy € SP be compactly supported. For any sequence
M, — oo, we have

ﬂ(v:

where €, is given by

iA—foH > Mae | Yl,...,vn)io,
20 12

€En = Lnn_ﬂ/(d+2/8+4)’ (1)

with L, a log-factor.
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Credible sets

We can use the credible sets of the posterior for Auy to construct
credible sets for f.

Theorem
If a < 8 is fixed, then there exists a set C, such that

lim  sup Pr(hheC)=1

17 fo:| Aug, || p<1
If a = 3, then for each Aug, € SP,

lim P (fe C,) = 1.
n—oo

%
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Simulations

0

0 0.2 0.4 0.6

Figure: n=10%10°108 10 with fy(x) = 1 - 4(x - 1/2)2.
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Simulations

Figure: n=10%10°,108 10'° with
fo(x) =1-4(x-1/2)? - 2 exp(-500(x — 1/2)?).




Simulations

fo

Lower credible band ~ Upper credible band
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Examples

° Heat equation with absorption:

%u— %Au = fu (x,t) €[0,1]9 x (0,1];
u(t,x) =g x € 0[0,1]9; (2)

u(0,-) = U x €[0,1]9.
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Examples

° Heat equation with absorption:

dt
u(t,x) =g x €9[0,1]¢; (2)

{iu%Au = fu (x,t) €[0,1]9 x (0,1];
w0 —u xe[01]%

* Darcy’s problem:

= x € (0,1];
: (3)
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Examples

° Heat equation with absorption:

dt
u(t,x) =g x €9[0,1]¢; (2)

{iu%Au = fu (x,t) €[0,1]9 x (0,1];
w0 —u xe[01]%

¢ Darcy’s problem:

d (¢d )
& (fiur) =g xe(01] 3
ur =0 x =0.
* First order ODE:
d%uf = fur x€(0,1]; (4)
ur =C x =0.
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Discussion

® Can it be applied to discrete observational models as well:

Y= (Af)(x) +e,i=1,...,n?
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® Can it be applied to discrete observational models as well:

Yi=(Afo)(xi) +e€;,i=1,...,n?

* Can this be extended PDE's without (explicit) inversion formulas?
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