Linear methods for non-linear inverse problems

Geerten Koers (Delft University of Technology)

Botond Szabó (Bocconi University) Aad van der Vaart (Delft University of Technology)

StatMathAppli 2022

2022-08-29

1 Setting

2 Prior

• **Goal:** To recover an infinite-dimensional parameter *f*₀ from the observation

$$Y = \mathcal{A}f_0 + \epsilon,$$

with ${\cal A}$ a known, injective map and ϵ noise.

- If \mathcal{A}^{-1} is not continuous, simply inverting Y may amplify noise.
- Usual approach: Model the data with a prior Π:

 $f \sim \Pi$ $Y \mid f \sim P_f$

and then analyse the posterior $f \mid Y$.

• **Goal:** To recover an infinite-dimensional parameter *f*₀ from the observation

$$Y = \mathcal{A}f_0 + \epsilon,$$

with ${\mathcal A}$ a known, injective map and ϵ noise.

- If \mathcal{A}^{-1} is not continuous, simply inverting Y may amplify noise.
- Usual approach: Model the data with a prior Π:

 $f \sim \Pi$ $Y \mid f \sim P_f$

and then analyse the posterior $f \mid Y$.

• **Goal:** To recover an infinite-dimensional parameter *f*₀ from the observation

$$Y = \mathcal{A}f_0 + \epsilon,$$

with ${\cal A}$ a known, injective map and ϵ noise.

- If \mathcal{A}^{-1} is not continuous, simply inverting Y may amplify noise.
- Usual approach: Model the data with a prior Π:

 $f \sim \Pi$ $Y \mid f \sim P_f$

and then analyse the posterior $f \mid Y$.

• **Goal:** To recover an infinite-dimensional parameter *f*₀ from the observation

$$Y = \mathcal{A}f_0 + \epsilon,$$

with ${\mathcal A}$ a known, injective map and ϵ noise.

- If \mathcal{A}^{-1} is not continuous, simply inverting Y may amplify noise.
- Usual approach: Model the data with a prior Π:

```
f \sim \PiY \mid f \sim P_f
```

and then analyse the posterior $f \mid Y$.

• Setup: We consider

$$\mathcal{L}u_f = c(f, u_f) \quad \text{on } \mathcal{O}, \\ u_f = g \quad \text{on } \Gamma \subseteq \partial \mathcal{O},$$

with \mathcal{L} a linear differential operator, and $c : \mathbb{R}^2 \to \mathbb{R}$ and $g : \partial \mathcal{O} \to \mathbb{R}$ are known functions.

• We assume we can invert:

 $\mathbf{f} = \mathbf{e}(\mathcal{L}\mathbf{u}_{\mathbf{f}}, \mathbf{u}_{\mathbf{f}})$

for a known map $e : \mathbb{R}^2 \to \mathbb{R}$.

• Our approach: Put a prior on $\mathcal{L}u_{f_0}$.

• Setup: We consider

$$\mathcal{L}u_f = c(f, u_f) \quad \text{on } \mathcal{O}, \\ u_f = g \quad \text{on } \Gamma \subseteq \partial \mathcal{O},$$

with \mathcal{L} a linear differential operator, and $c : \mathbb{R}^2 \to \mathbb{R}$ and $g : \partial \mathcal{O} \to \mathbb{R}$ are known functions.

• We assume we can invert:

 $\mathbf{f} = \mathbf{e}(\mathcal{L}\mathbf{u}_{\mathbf{f}},\mathbf{u}_{\mathbf{f}})$

for a known map $e : \mathbb{R}^2 \to \mathbb{R}$.

Our approach: Put a prior on Lu_{fo}.

• Setup: We consider

$$\mathcal{L}u_f = c(f, u_f) \quad \text{on } \mathcal{O}, \\ u_f = g \quad \text{on } \Gamma \subseteq \partial \mathcal{O},$$

with \mathcal{L} a linear differential operator, and $c : \mathbb{R}^2 \to \mathbb{R}$ and $g : \partial \mathcal{O} \to \mathbb{R}$ are known functions.

• We assume we can invert:

 $\mathbf{f} = \mathbf{e}(\mathcal{L}\mathbf{u}_{\mathbf{f}},\mathbf{u}_{\mathbf{f}})$

for a known map $e : \mathbb{R}^2 \to \mathbb{R}$.

• Our approach: Put a prior on $\mathcal{L}u_{f_0}$.

Example: Schrödinger Equation

• For $f_0 > 0$, consider u_{f_0} the solution to the PDE

$$\frac{1}{2}\Delta u_{f_0} = f u_{f_0}$$

on $\mathcal{O} \subset \mathbb{R}^d$, with $u_{f_0} = g$ on $\partial \mathcal{O}$.

- We observe $Y = u_{f_0} + \frac{1}{\sqrt{n}}\epsilon$, with ϵ Gaussian noise indexed by $L^2(\mathcal{O})$.
- How can we recover f_0 in an optimal way, and quantify the uncertainty, as $n \rightarrow \infty$?

Example: Schrödinger Equation

• For $f_0 > 0$, consider u_{f_0} the solution to the PDE

$$\frac{1}{2}\Delta u_{f_0} = f u_{f_0}$$

on $\mathcal{O} \subset \mathbb{R}^d$, with $u_{f_0} = g$ on $\partial \mathcal{O}$.

- We observe $Y = u_{f_0} + \frac{1}{\sqrt{n}}\epsilon$, with ϵ Gaussian noise indexed by $L^2(\mathcal{O})$.
- How can we recover f₀ in an optimal way, and quantify the uncertainty, as n → ∞?

Example: Schrödinger Equation

• For $f_0 > 0$, consider u_{f_0} the solution to the PDE

$$\frac{1}{2}\Delta u_{f_0} = f u_{f_0}$$

on $\mathcal{O} \subset \mathbb{R}^d$, with $u_{f_0} = g$ on $\partial \mathcal{O}$.

- We observe $Y = u_{f_0} + \frac{1}{\sqrt{n}}\epsilon$, with ϵ Gaussian noise indexed by $L^2(\mathcal{O})$.
- How can we recover f₀ in an optimal way, and quantify the uncertainty, as n → ∞?

Intuition

The method consists of three steps:

- Put a prior on Δu_{f_0} and compute the posterior using the observations.
- Using the posterior for Δu_{f_0} and g, recover u_{f_0} .
- Recover f_0 by using the structural equation coming from the PDE.

Intuition

The method consists of three steps:

- Put a prior on Δu_{f_0} and compute the posterior using the observations.
- Using the posterior for Δu_{f_0} and g, recover u_{f_0} .
- Recover f_0 by using the structural equation coming from the PDE.

Intuition

The method consists of three steps:

- Put a prior on Δu_{f_0} and compute the posterior using the observations.
- Using the posterior for Δu_{f_0} and g, recover u_{f_0} .
- Recover f_0 by using the structural equation coming from the PDE.

Linearisation

• Let K be the integral operator

$$\begin{cases} \Delta K(h) = h & \text{on } \mathcal{O}; \\ K(h) = 0 & \text{on } \partial \mathcal{O}. \end{cases}$$

• Take \tilde{g} such that $\Delta \tilde{g} = 0$ and $\tilde{g}|_{\partial \mathcal{O}} = g$ and write

$$Y = K(\Delta u_{f_0}) + \tilde{g} + \frac{1}{\sqrt{n}}\epsilon.$$

• The problem becomes linear for $\hat{Y} \coloneqq Y - \tilde{g}$.

Linearisation

• Let K be the integral operator

$$\begin{cases} \Delta K(h) = h & \text{on } \mathcal{O}; \\ K(h) = 0 & \text{on } \partial \mathcal{O}. \end{cases}$$

• Take \tilde{g} such that $\Delta \tilde{g} = 0$ and $\tilde{g}|_{\partial \mathcal{O}} = g$ and write $Y = K(\Delta u_{f_0}) + \tilde{g} + \frac{1}{\sqrt{n}}\epsilon.$

• The problem becomes linear for $\hat{Y} \coloneqq Y - \tilde{g}$.

Linearisation

• Let K be the integral operator

$$\begin{cases} \Delta K(h) = h & \text{on } \mathcal{O}; \\ K(h) = 0 & \text{on } \partial \mathcal{O}. \end{cases}$$

• Take \tilde{g} such that $\Delta \tilde{g} = 0$ and $\tilde{g}|_{\partial \mathcal{O}} = g$ and write

$$Y = K(\Delta u_{f_0}) + \tilde{g} + \frac{1}{\sqrt{n}}\epsilon.$$

• The problem becomes linear for $\hat{Y} := Y - \tilde{g}$.

Inversion method

For any v ∈ L²(O), using the boundary conditions, we can construct a function û_v = K(v) + ğ satisfying

$$\begin{cases} \Delta \hat{u}_{v} = v & \text{on } \mathcal{O}; \\ \hat{u}_{v} = g & \text{on } \partial \mathcal{O}. \end{cases}$$

• Using the inversion $f_0 = \frac{\Delta u_{f_0}}{2u_{f_0}}$, we construct $\hat{f} := \frac{v}{2\hat{u}_v}$.

Inversion method

For any v ∈ L²(O), using the boundary conditions, we can construct a function û_v = K(v) + ğ satisfying

$$\begin{cases} \Delta \hat{u}_{v} = v & \text{on } \mathcal{O}; \\ \hat{u}_{v} = g & \text{on } \partial \mathcal{O}. \end{cases}$$

• Using the inversion
$$f_0 = \frac{\Delta u_{f_0}}{2u_{f_0}}$$
, we construct $\hat{f} := \frac{v}{2\hat{u}_v}$.

Equivalent model

• The eigenbasis h_i of $K^{\mathsf{T}}K$ is convenient to model the observations.

• We observe

$$\hat{Y}_i = \kappa_i \ \mu_{0,i} + \frac{1}{\sqrt{n}} Z_i, i = 1, 2, \dots$$

with

- * κ_i^2 the eigenvalues of $K^{\mathsf{T}}K$;
- * $\mu_{0,i} \coloneqq \langle \mathcal{L}u_{f_0}, h_i \rangle$ the coefficients of $\mathcal{L}u_{f_0}$ with respect to the basis;
- * $Z_i \sim N(0,1)$ i.i.d.

Equivalent model

- The eigenbasis h_i of $K^{\mathsf{T}}K$ is convenient to model the observations.
- We observe

$$\hat{Y}_i = \kappa_i \ \mu_{0,i} + \frac{1}{\sqrt{n}} Z_i, i = 1, 2, \dots$$

with

- * κ_i^2 the eigenvalues of $K^{\mathsf{T}}K$;
- * $\mu_{0,i} \coloneqq \langle \mathcal{L}u_{f_0}, h_i \rangle$ the coefficients of $\mathcal{L}u_{f_0}$ with respect to the basis; * $\mathcal{I} = \mathcal{N}(0, 1)$: : d
- * $Z_i \sim N(0,1)$ i.i.d.

- Smoothness: The smoothness of Lu_{f0} is determined by the decay of μ_{0,i} for i → ∞.
- We say that $\mu \in S^{\beta}$ if $\sum_{i=1}^{\infty} \mu_i^2 i^{2\beta} < \infty$.
- Prior: Take a Gaussian prior

$$\mu_{i,0} \sim N(0, i^{-1-2\alpha}).$$

- Smoothness: The smoothness of Lu_{f0} is determined by the decay of μ_{0,i} for i → ∞.
- We say that $\mu \in S^{\beta}$ if $\sum_{i=1}^{\infty} \mu_i^2 i^{2\beta} < \infty$.

• **Prior:** Take a Gaussian prior

$$\mu_{i,0} \sim N(0,i^{-1-2\alpha}).$$

- Smoothness: The smoothness of Lu_{f0} is determined by the decay of μ_{0,i} for i → ∞.
- We say that $\mu \in S^{\beta}$ if $\sum_{i=1}^{\infty} \mu_i^2 i^{2\beta} < \infty$.
- Prior: Take a Gaussian prior

$$\mu_{i,0} \sim N(0, i^{-1-2\alpha}).$$

- Smoothness: The smoothness of Lu_{f0} is determined by the decay of μ_{0,i} for i → ∞.
- We say that $\mu \in S^{\beta}$ if $\sum_{i=1}^{\infty} \mu_i^2 i^{2\beta} < \infty$.
- Prior: Take a Gaussian prior

$$\mu_{i,0} \sim N(0, i^{-1-2\alpha}).$$

Adaptation

• Empirical Bayes: The log-likelihood of \hat{Y} given α is

$$\ell_n(\alpha) = \frac{1}{2} \sum_{i=1}^{\infty} \left(\log \left(1 + \frac{n}{i^{1+2\alpha} \kappa_i^{-2}} \right) - \frac{n^2}{i^{1+2\alpha} \kappa_i^{-2} + n} \hat{Y}_i^2 \right).$$

The maximizer

$$\hat{\alpha}_n = \operatorname{argmax}_{\alpha \in [0, \log n]} \ell_n(\alpha)$$

is used as a plug-in estimator, i.e. use the prior $\Pi_{\alpha}|_{\alpha=\hat{\alpha}_{n}}$.¹²

• **Hierarchical Bayes:** We put a prior τ on α such that $\tau(\alpha) \asymp \alpha^{-c_1} e^{-c_2 \alpha}$.

¹B. Knapik, A. van der Vaart, and H. van Zanten (2011). "Bayesian Inverse Problems with Gaussian Priors". In: *The* Annals of Statistics 39.5, pp. 2626–2657. DOI: 10.1214/11-A08920

²B. Knapik, B. Szabo, A. van der Vaart, and H. van Zanten (2015). "Bayes procedures for adaptive inference in inverse problems for the white noise model". In: *Probability Theory and Related Fields* 164.3, pp. 771-815. DOI: 10.1007/s00440-015-0619-7

Adaptation

• Empirical Bayes: The log-likelihood of \hat{Y} given α is

$$\ell_n(\alpha) = \frac{1}{2} \sum_{i=1}^{\infty} \left(\log \left(1 + \frac{n}{i^{1+2\alpha} \kappa_i^{-2}} \right) - \frac{n^2}{i^{1+2\alpha} \kappa_i^{-2} + n} \hat{Y}_i^2 \right).$$

The maximizer

$$\hat{\alpha}_n = \operatorname{argmax}_{\alpha \in [0, \log n]} \ell_n(\alpha)$$

is used as a plug-in estimator, i.e. use the prior $\Pi_{\alpha}|_{\alpha=\hat{\alpha}_{p}}$.¹²

• **Hierarchical Bayes:** We put a prior τ on α such that $\tau(\alpha) \asymp \alpha^{-c1} e^{-c_2 \alpha}$.

¹B. Knapik, A. van der Vaart, and H. van Zanten (2011). "Bayesian Inverse Problems with Gaussian Priors". In: *The Annals of Statistics* 39.5, pp. 2626–2657. DOI: 10.1214/11-A0S920

²B. Knapik, B. Szabo, A. van der Vaart, and H. van Zanten (2015). "Bayes procedures for adaptive inference in inverse problems for the white noise model". In: *Probability Theory and Related Fields* 164.3, pp. 771–813. DOI: 10.1007/s00440-015-0619-7

Adaptation

• Empirical Bayes: The log-likelihood of \hat{Y} given α is

$$\ell_n(\alpha) = \frac{1}{2} \sum_{i=1}^{\infty} \left(\log \left(1 + \frac{n}{i^{1+2\alpha} \kappa_i^{-2}} \right) - \frac{n^2}{i^{1+2\alpha} \kappa_i^{-2} + n} \hat{Y}_i^2 \right).$$

The maximizer

$$\hat{\alpha}_n = \operatorname{argmax}_{\alpha \in [0, \log n]} \ell_n(\alpha)$$

is used as a plug-in estimator, i.e. use the prior $\Pi_{\alpha}|_{\alpha=\hat{\alpha}_n}$.¹²

• **Hierarchical Bayes:** We put a prior τ on α such that $\tau(\alpha) \asymp \alpha^{-c1} e^{-c_2 \alpha}$.

¹B. Knapik, A. van der Vaart, and H. van Zanten (2011). "Bayesian Inverse Problems with Gaussian Priors". In: *The Annals of Statistics* 39.5, pp. 2626–2657. DOI: 10.1214/11-A0S920

²B. Knapik, B. Szabo, A. van der Vaart, and H. van Zanten (2015). "Bayes procedures for adaptive inference in inverse problems for the white noise model". In: *Probability Theory and Related Fields* 164.3, pp. 771–813. DOI: 10.1007/s00440-015-0619-7

• We now consider $\mathcal{O} = [0, 1]^d$.

• The eigenfunctions and eigenvalues of $K^{T}K$ are

$$\begin{split} h_{i_1,...,i_d} &= 2^{d/2} \prod_{j=1}^d \sin(i_j \pi x_j) \\ \kappa_{i_1,...,i_d}^2 &= \frac{1}{(\sum_{j=1}^d i_j^2)^2 \pi^4}. \end{split}$$

- We now consider $\mathcal{O} = [0, 1]^d$.
- The eigenfunctions and eigenvalues of $K^{\mathsf{T}}K$ are

$$\begin{split} h_{i_1,...,i_d} &= 2^{d/2} \prod_{j=1}^d \sin(i_j \pi x_j) \\ \kappa_{i_1,...,i_d}^2 &= \frac{1}{(\sum_{j=1}^d i_j^2)^2 \pi^4}. \end{split}$$

,

Convergence rate

Theorem

For $\beta > \frac{d}{2}$, let $f_0 \in S^{\beta}$ be compactly supported. For any sequence $M_n \to \infty$, we have

$$\Pi\left(\mathbf{v}: \left\|\frac{\mathbf{v}}{2\hat{u}}-f_0\right\|_{L^2} \geq M_n \epsilon_n \mid Y_1, \ldots, Y_n\right) \xrightarrow{P} \mathbf{0},$$

where ϵ_n is given by

$$\epsilon_n = L_n n^{-\beta/(d+2\beta+4)},\tag{1}$$

with L_n a log-factor.

Credible sets

We can use the credible sets of the posterior for Δu_{f_0} to construct credible sets for f.

Theorem

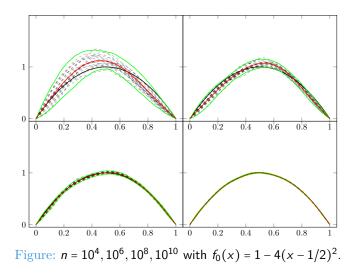
If $\alpha < \beta$ is fixed, then there exists a set C_{γ} such that

$$\lim_{n\to\infty}\sup_{f_0:\|\Delta u_{f_0}\|_{\beta}\leq 1}\mathbb{P}_{f_0}(f_0\in C_{\gamma})=1.$$

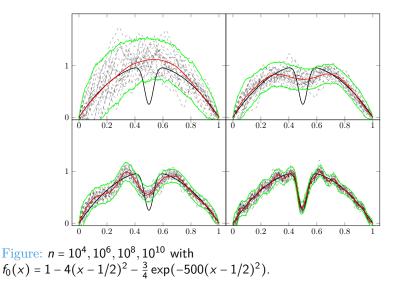
If $\alpha = \beta$, then for each $\Delta u_{f_0} \in S^{\beta}$,

 $\lim_{n\to\infty}\mathbb{P}_{f_0}(f_0\in C_{\gamma})=1.$

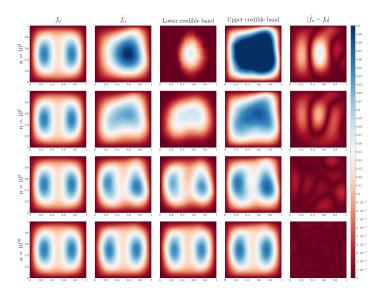
Simulations



Simulations



Simulations



TUDelft

Examples

• Heat equation with absorption:

$$\begin{cases} \frac{d}{dt}u - \frac{1}{2}\Delta u &= fu & (x,t) \in [0,1]^d \times (0,1]; \\ u(t,x) &= g & x \in \partial [0,1]^d; \\ u(0,\cdot) &= u_0 & x \in [0,1]^d. \end{cases}$$
(2)

• Darcy's problem:

$$\begin{cases} \frac{d}{dx} \left(f \frac{d}{dx} u_f \right) &= g \qquad x \in (0, 1]; \\ u_f &= 0 \qquad x = 0. \end{cases}$$
(3)

• First order ODE:

$$\begin{cases} \frac{d}{dx}u_f &= fu_f \qquad x \in (0,1];\\ u_f &= c \qquad x = 0. \end{cases}$$
(4)

Examples

• Heat equation with absorption:

$$\begin{cases} \frac{d}{dt}u - \frac{1}{2}\Delta u &= fu \qquad (x,t) \in [0,1]^d \times (0,1]; \\ u(t,x) &= g \qquad x \in \partial [0,1]^d; \\ u(0,\cdot) &= u_0 \qquad x \in [0,1]^d. \end{cases}$$
(2)

• Darcy's problem:

$$\begin{cases} \frac{d}{dx} \left(f \frac{d}{dx} u_f \right) &= g \qquad x \in (0, 1]; \\ u_f &= 0 \qquad x = 0. \end{cases}$$
(3)

• First order ODE:

$$\begin{cases} \frac{d}{dx}u_f &= fu_f \qquad x \in (0,1];\\ u_f &= c \qquad x = 0. \end{cases}$$
(4)

Examples

• Heat equation with absorption:

$$\begin{cases} \frac{d}{dt}u - \frac{1}{2}\Delta u &= fu \qquad (x,t) \in [0,1]^d \times (0,1]; \\ u(t,x) &= g \qquad x \in \partial [0,1]^d; \\ u(0,\cdot) &= u_0 \qquad x \in [0,1]^d. \end{cases}$$
(2)

• Darcy's problem:

$$\begin{cases} \frac{d}{dx} \left(f \frac{d}{dx} u_f \right) &= g \qquad x \in (0,1]; \\ u_f &= 0 \qquad x = 0. \end{cases}$$
(3)

• First order ODE:

$$\begin{cases} \frac{d}{dx}u_f = fu_f & x \in (0,1];\\ u_f = c & x = 0. \end{cases}$$

$$\tag{4}$$

Discussion

• Can it be applied to discrete observational models as well:

$$Y_i = (\mathcal{A}f_0)(x_i) + \epsilon_i, i = 1, \ldots, n?$$

• Can this be extended PDE's without (explicit) inversion formulas?

Discussion

• Can it be applied to discrete observational models as well:

$$Y_i = (\mathcal{A}f_0)(x_i) + \epsilon_i, i = 1, \ldots, n?$$

• Can this be extended PDE's without (explicit) inversion formulas?

Discussion

• Can it be applied to discrete observational models as well:

$$Y_i = (\mathcal{A}f_0)(x_i) + \epsilon_i, i = 1, \ldots, n?$$

• Can this be extended PDE's without (explicit) inversion formulas?

References I

Knapik, B., B. Szabo, A. van der Vaart, and H. van Zanten (2015). "Bayes procedures for adaptive inference in inverse problems for the white noise model". In: *Probability Theory and Related Fields* 164.3, pp. 771–813. DOI: 10.1007/s00440-015-0619-7.

Knapik, B., A. van der Vaart, and H. van Zanten (2011). "Bayesian Inverse Problems with Gaussian Priors". In: *The Annals of Statistics* 39.5, pp. 2626–2657. DOI: 10.1214/11-A0S920.

Nickl, R. (2018). "Bernstein-von Mises Theorems for statistical inverse problems I: Schrödinger Equation". In: *Journal of the European Mathematical Society* 22.8, pp. 2697–2750. DOI: https://doi.org/10.4171/JEMS/975.

