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Inverse problems

● Goal: To recover an infinite-dimensional parameter f0 from the
observation

Y = Af0 + ε,

with A a known, injective map and ε noise.
● If A−1 is not continuous, simply inverting Y may amplify noise.
● Usual approach: Model the data with a prior Π:

f ∼ Π
Y ∣ f ∼ Pf

and then analyse the posterior f ∣ Y .
● For linear f ↦ Af , there are good (asymptotic) results.
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Inverse problems

● Setup: We consider

Luf = c(f ,uf ) on O,
uf = g on Γ ⊆ ∂O,

with L a linear differential operator, and c ∶ R2 → R and
g ∶ ∂O → R are known functions.
● We assume we can invert:

f = e(Luf,uf)

for a known map e ∶ R2 → R.
● Our approach: Put a prior on Luf0 .
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Example: Schrödinger Equation

● For f0 > 0, consider uf0 the solution to the PDE

1
2
∆uf0 = fuf0

on O ⊂ Rd , with uf0 = g on ∂O.
● We observe Y = uf0 + 1√

nε, with ε Gaussian noise indexed by L2(O).
● How can we recover f0 in an optimal way, and quantify the
uncertainty, as n →∞?
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Intuition

The method consists of three steps:
● Put a prior on ∆uf0 and compute the posterior using the
observations.
● Using the posterior for ∆uf0 and g , recover uf0 .
● Recover f0 by using the structural equation coming from the PDE.
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Linearisation

● Let K be the integral operator

⎧⎪⎪⎨⎪⎪⎩

∆K(h) = h on O;
K(h) = 0 on ∂O.

● Take g̃ such that ∆g̃ = 0 and g̃ ∣∂O = g and write

Y = K(∆uf0) + g̃ + 1√
n
ε.

● The problem becomes linear for Ŷ ∶= Y − g̃ .
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Inversion method

● For any v ∈ L2(O), using the boundary conditions, we can
construct a function ûv = K(v) + g̃ satisfying

⎧⎪⎪⎨⎪⎪⎩

∆ûv = v on O;
ûv = g on ∂O.

● Using the inversion f0 =
∆uf0
2uf0

, we construct f̂ ∶= v
2ûv

.
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Equivalent model

● The eigenbasis hi of K⊺K is convenient to model the observations.
● We observe

Ŷi = κi µ0,i +
1√
n

Zi , i = 1,2, . . .

with
* κ2

i the eigenvalues of K⊺K ;
* µ0,i ∶= ⟨Luf0 ,hi⟩ the coefficients of Luf0 with respect to the basis;
* Zi ∼ N(0,1) i.i.d.
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Prior

● Smoothness: The smoothness of Luf0 is determined by the decay
of µ0,i for i →∞.
● We say that µ ∈ Sβ if ∑∞i=1 µ2

i i2β < ∞.
● Prior: Take a Gaussian prior

µi,0 ∼ N(0, i−1−2α).

● We wish to match α with the unknown β.
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Adaptation
● Empirical Bayes: The log-likelihood of Ŷ given α is

`n(α) =
1
2

∞

∑
i=1
(log(1 + n

i1+2ακ−2
i
) − n2

i1+2ακ−2
i + n

Ŷ 2
i ) .

● The maximizer

α̂n = argmaxα∈[0,log n]`n(α)

is used as a plug-in estimator, i.e. use the prior Πα∣α=α̂n .12

● Hierarchical Bayes: We put a prior τ on α such that
τ(α) ≍ α−c1e−c2α.

1B. Knapik, A. van der Vaart, and H. van Zanten (2011). “Bayesian Inverse Problems with Gaussian Priors”. In: The
Annals of Statistics 39.5, pp. 2626–2657. doi: 10.1214/11-AOS920

2B. Knapik, B. Szabo, A. van der Vaart, and H. van Zanten (2015). “Bayes procedures for adaptive inference in inverse
problems for the white noise model”. In: Probability Theory and Related Fields 164.3, pp. 771–813. doi:
10.1007/s00440-015-0619-7
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`n(α) =
1
2

∞

∑
i=1
(log(1 + n

i1+2ακ−2
i
) − n2

i1+2ακ−2
i + n
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Prior

● We now consider O = [0,1]d .
● The eigenfunctions and eigenvalues of K⊺K are

hi1,...,id = 2d/2
d
∏
j=1

sin(ijπxj),

κ2
i1,...,id =

1
(∑d

j=1 i2j )2π4
.
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Convergence rate

Theorem
For β > d

2 , let f0 ∈ Sβ be compactly supported. For any sequence
Mn →∞, we have

Π(v ∶ ∥ v
2û
− f0∥

L2
≥Mnεn ∣ Y1, . . . ,Yn)

P→ 0,

where εn is given by

εn = Lnn−β/(d+2β+4), (1)

with Ln a log-factor.

13 / 20



Credible sets

We can use the credible sets of the posterior for ∆uf0 to construct
credible sets for f .

Theorem
If α < β is fixed, then there exists a set Cγ such that

lim
n→∞

sup
f0∶∥∆uf0∥β≤1

Pf0(f0 ∈ Cγ) = 1.

If α = β, then for each ∆uf0 ∈ Sβ,

lim
n→∞

Pf0(f0 ∈ Cγ) = 1.

14 / 20



Simulations
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Figure: n = 104,106,108,1010 with f0(x) = 1 − 4(x − 1/2)2.
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Simulations

17 / 20



Examples
● Heat equation with absorption:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

d
dt u − 1

2∆u = fu (x , t) ∈ [0,1]d × (0,1];
u(t, x) = g x ∈ ∂[0,1]d ;
u(0, ⋅) = u0 x ∈ [0,1]d .

(2)

● Darcy’s problem:

{
d
dx (f

d
dx uf ) = g x ∈ (0,1];

uf = 0 x = 0. (3)

● First order ODE:

{
d
dx uf = fuf x ∈ (0,1];
uf = c x = 0. (4)
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Discussion

● Can it be applied to discrete observational models as well:

Yi = (Af0)(xi) + εi , i = 1, . . . ,n?

● Can this be extended PDE’s without (explicit) inversion formulas?

19 / 20



Discussion

● Can it be applied to discrete observational models as well:

Yi = (Af0)(xi) + εi , i = 1, . . . ,n?

● Can this be extended PDE’s without (explicit) inversion formulas?

19 / 20



Discussion

● Can it be applied to discrete observational models as well:

Yi = (Af0)(xi) + εi , i = 1, . . . ,n?

● Can this be extended PDE’s without (explicit) inversion formulas?

19 / 20



References I

Knapik, B., B. Szabo, A. van der Vaart, and H. van Zanten (2015). “Bayes procedures
for adaptive inference in inverse problems for the white noise model”. In: Probability
Theory and Related Fields 164.3, pp. 771–813. doi: 10.1007/s00440-015-0619-7.

Knapik, B., A. van der Vaart, and H. van Zanten (2011). “Bayesian Inverse Problems
with Gaussian Priors”. In: The Annals of Statistics 39.5, pp. 2626–2657. doi:
10.1214/11-AOS920.

Nickl, R. (2018). “Bernstein-von Mises Theorems for statistical inverse problems I:
Schrödinger Equation”. In: Journal of the European Mathematical Society 22.8,
pp. 2697–2750. doi: https://doi.org/10.4171/JEMS/975.

20 / 20

https://doi.org/10.1007/s00440-015-0619-7
https://doi.org/10.1214/11-AOS920
https://doi.org/https://doi.org/10.4171/JEMS/975

	Setting
	Prior
	Theorem
	Simulations
	Discussion
	References

