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Hamiltonian Monte Carlo (HMC) and the NUTS intuition.


Dynamic HMC algorithms.
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No U-Turn Sampler (NUTS) : 
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NUTS is used in PyMC3, Stan and Turing, widely used 
software for Bayesian computational statistics.


Other libraries use Gibbs sampling for its flexibility. (BUGS, JAGS)


OK, in practice, everyone use NUTS when it is possible,

 but why does it work well ? 
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Ergodicity Geometric ergodicity -invariance π

HMC

 is fixedT

NUTS

 variesT

? ?

lim
n→∞

| |Kn(x, ⋅ ) − π | |TV = 0, | |Kn(x, ⋅ ) − π | |𝒱 = O(ρn), ρ < 1∫ K(x, . )d π = π

Appendix of

[Durmus and al, 2017] [Durmus and al, 2017] 

Qualitative 

property 

[Duane and al, 1987] 

[Betancourt, 2017] 
Not reviewed 
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Ergodicity Geometric ergodicity -invariance π
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n→∞

| |Kn(x, ⋅ ) − π | |TV = 0, | |Kn(x, ⋅ ) − π | |𝒱 = O(ρn), ρ < 1∫ K(x, . )d π = π
Qualitative 
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NEW ! NEW !

+ give a proof with a 
general formalism

[Durmus and al, 2023] [Durmus and al, 2023] 

By bounding the stepsize 

and the HMC’s assumptions on , 
or without bounding the stepsize 

with more stringent regularity 
conditions on .

h
U

U

Conditions of the ergodicity +

Conditions of HMC geometric 

ergodicity

[Durmus and al, 2023] 

NEW !

Without bounding the stepsize

NEW !

[Durmus and al, 2023] 

Appendix of
[Betancourt, 2017] 

Not reviewed 

[Duane and al, 1987] [Durmus and al, 2017] 
HMC

 is fixedT

NUTS

 variesT
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The study of NUTS is highly technical.

We introduce a general formalism and explicit expressions.


NUTS relies on a stopping time .

Its regularity is hard to analyze.


(q0, p0) ∈ (ℝd)2 ↦ S(a, q0, p0)

Theoretical properties are not very attractive. 

We try to stick to the practical situation framework. 
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Define potential energy   and Hamiltonian 


 for any 


U(q) = − log(π(q))

H(q, p) = U(q) + p⊤p/2 (q, p) ∈ (ℝd)2 .

Hamiltonian Monte Carlo

Hamiltonian dynamics , for any 


         


         


 

(q(t), p(t)) ∈ (ℝd)2 t ≥ 0.
dq(t)

dt
= ∇pH(q(t), p(t)) = p(t)

dp(t)
dt

= − ∇qH(q(t), p(t)) = − ∇U(q(t))

HMC algorithm (h, T )

  At iteration t, Markov chain at state  :


1. Sample  and set 


2. Solve dynamics over time lengths  with the leapfrog integrator using  to get .


3. Sample . If , set , otherwise set 


Xt

P0 ∼ 𝒩(0d, Id) (q(0), p(0)) = (Xt, P0)
T (h, T ) Φ(T)

h (Xt, P0) = (qT, pT)
U* ∼ 𝒰([0,1]) U* ≤ min {1, exp [H(q0, p0) − H(qT, pT)]} Xt+1 = qT Xt+1 = Xt .

Hamiltonian dynamics related to a pendulum.
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Defiti 


 for any 


U(q) = − log(π(q))

H(q, p) = U(q) + p⊤p/2 (q, p) ∈ (ℝd)2 .

Hamiltonian Monte Carlo

Hamiltonian dynamics , for any 


         


         


 

(q(t), p(t)) ∈ (ℝd)2 t ≥ 0.
dq(t)

dt
= ∇pH(q(t), p(t)) = p(t)

dp(t)
dt

= − ∇qH(q(t), p(t)) = − ∇U(q(t))

HMC algorithm (h, T )

  At iterati 


1. Sample  and set 


2. Solve dynamics over ti   


3. Sample . If , set , otherwise set 


Xt

P0 ∼ 𝒩  (q(0), p(0)) = (Xt, P0)
T (h, T ) Φ(T)

h (Xt, P0) = (qT, pT)
U* ∼ 𝒰 U* ≤ min {1, exp [H(q0, p0) − H(qT, pT)]} Xt+1 = qT Xt+1 = Xt .

Hamiltonian dynamics related to a pendulum.

8

(MH)

The sampler efficiency related to the energy loss during the numerical integration 
 depends on the physical time  .


The Hamiltonian dynamics can create cycles.

If  is too large, the proposition can be close to the starting point !


How to select  ?


[H(q0, p0) − H(qT, pT)] hT

T

h, T



q0

p0

q6 (q6 − q0)T p6 < 0

p6

q 6
− q 0

p6

>90°α

T = 6

The intuition behind the No U-Turn Sampler.
No U-turn criteria between  and , by denoting  for any , 

 or .


 

T1 T2 Φ( j)
h (q0, p0) = (qj, pj) (q0, p0) ∈ (ℝd)2

FT1,T2
q0

(p0) = (qT2
− qT1

)⊤pT1
< 0 (qT2

− qT1
)⊤pT2

< 0
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We can not just take the last point  before the U-turn to have the target invariance ! 
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We can not just take the last point  before the U-turn to have the target invariance ! 

 

p6

Stopping time regularity condition :


For any  the following set is dense,





A more « human » condition to satisfy the previous one :


  is -lypschitz and the stepsize is bounded by  with 

or 

  is gaussian and the stepsize is in  with  countable.


or


  is real-analytic and 


q ∈ ℝd

𝖥q,−0 = {p ∈ ℝd : FT1,T2
q (p) ≠ 0, T1, T2 ∈ [−2Km + 1 : 2Km − 1]2, T1 ≠ T2}

∇U L C/(L2Km) C > 0 .

π ℝ*+∖ℋ ℋ

U lim
|q|→∞

|∇2U(q) | = 0
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q0

q6

Introduction of Dynamic HMC kernels

1

11

Let  and let an orbit selection kernel 

be a family of probability distributions on 

h > 0, Km ∈ ℕ
𝒫([−2Km, …,2Km])

Let an index selection kernel 

be a family of probability distributions on [−2Km, …,2Km]

{Ph( ⋅ |q0, p0) : (q0, p0) ∈ (ℝd)2}

{Qh( ⋅ |𝖩, q0, p0) : 𝖩 ⊂ [−2Km,2Km], (q0, p0) ∈ (ℝd)2}

q1

q2

q3

q4 q5

𝖩 = [0,…,6]

p02



Dynamic HMC algorithm
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Define the Dynamic HMC  as the 
Markov chain defined by the 
following steps that define  given  :


(Ph, Qh)
(Qk)k∈ℕ

Qk+1 Qk

1. Sample 


2. Sample  with distribution 


3. Sample  with distribution 


4. Set , where 

Pk+1 ∼ 𝒩(0d, Id)

𝖨k+1 Ph( ⋅ |Qk, Pk+1)

Jk+1 Qh( ⋅ |𝖨k+1, Qk, Pk+1)

Qk+1 = proj1 {ΦJk+1
h (Qk, Pk+1)}

proj1 : (x, y) ∈ (ℝd)2 ↦ x ∈ ℝd

PHMC
h ({0,T} ∣ q0, p0) = 1

HMC case  : 

QHMC
h ( ⋅ |{0,T}, q0, p0) = (1 ∧

π̃(Φ(T)
h (q0, p0))

π̃(q0, p0) ) δT( ⋅ ) + (1 − 1 ∧
π̃(Φ(T)

h (q0, p0))
π̃(q0, p0) ) δ0( ⋅ )

where we denote by π̃(q, p) ∝ exp(−H(q, p)) = π(q) × exp(−p⊤p/2)



Dynamic HMC properties
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Kh(q0, 𝖠) ≠ ∑
j∈ℤ

ωj(q0) KHMC
h,j (q0, 𝖠)

General expression of the Dynamic HMC kernel for any : 𝖠 ∈ ℬ(ℝd)

Kh(q0, 𝖠) = ∫ 𝒩(p; 0d, Id)(p0)K̃h((q0, p0), 𝖠)d p0

K̃h((q0, p0), 𝖠) = ∑
𝖩⊂ℤ

∑
j∈𝖩

Ph(𝖩 |q0, p0)Qh( j |𝖩, q0, p0)δproj1(Φ( j)
h (q0,p0))(𝖠)

It is not a trivial extension of the HMC case 

π̃(q0, p0)Ph (𝖩 |q0, p0) = ∑
j∈ℤ

1𝖩(0)π̃ (Φ(−j)
h (q0, p0)) 𝖯h (𝖩 + j |Φ(−j)

h (q0, p0)) Qh (j |𝖩 + j, Φ(−j)
h (q0, p0))

Proposition : 

Assume that  satisfy the following equation for any  : (Ph, Qh) (q0, p0) ∈ (ℝd)2, 𝖩 ⊂ ℤ

Then,  leaves the target measure  invariant Kh π
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K̃h((q0, p0), 𝖠 
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𝖩

𝖩    𝖩  
 𝖠

It is not a trivial extension of the HMC case 

π̃(q0, p0)Ph (𝖩   


𝖩 
   𝖯 𝖩  

     𝖩  
 

Proposition : 

Assume that  satisfy the following equation for any  : (Ph, Qh) (q0, p0) ∈ (ℝd)2, 𝖩 

Then,  leaves the target measure  invariant Kh π

Assume,


For any  and ,


Then, the invariant condition reduces to 





(q0, p0) ∈ (ℝd)2, 𝖩 ⊂ ℤ −j ∈ 𝖩, Ph (𝖩 + j |Φ(−j)
h (q0, p0)) = Ph (𝖩 |q0, p0)

π̃(q0, p0) = ∑
j∈ℤ

1𝖩(0)π̃ (Φ(−j)
h (q0, p0)) Qh (j |𝖩 + j, Φ(−j)

h (q0, p0))
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NUTS’ orbit selection kernel ph

For any  and (q0, p0) ∈ (ℝd)2, 𝖩 ⊂ ℤ −j ∈ 𝖩, Ph (𝖩 + j |Φ(−j)
h (q0, p0)) = Ph (𝖩 |q0, p0)Symmetry property  : 

Scheme of the construction of the index set  in the Algorithm 1 presented in [Durmus and al, 2023].  If

Explicit expression of  in the paper. ph

Binary tree enable fast 
practical recursive 
implementation. 
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Thank you again !




NUTS selection kernel qh .
11
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Ergodicity Geometric ergodicity -invariance π

HMC

NUTS

 By construction,

with the MH mechanism. 

? ?

lim
n→∞

| |Kn(x, ⋅ ) − π | |TV = 0, | |Kn(x, ⋅ ) − π | |𝒱 = O(ρn), ρ < 1∫ K(x, . )d π = π

 Less trivial to check,

performed in the


Appendix of

 By assuming

  continuously differentiable ,


  lipschitz and

by bounding the stepsize .

U
∇U

h

 By assuming  

to be a gaussian perturbed

 outside of a compact and


by bounding the stepsize .

U

h
[Durmus and al, 2017] [Durmus and al, 2017] 

Qualitative 

property 

[Duane and al, 1987] 

[Betancourt, 2017] 
Not reviewed 
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Hamiltonian Monte Carlo
HMC algorithm (h, T )

At iteration t, Markov chain at state  :


1. Sample  and set 


2. Leapfrog integrator: define for any ,











for any  and 


Then, set .


3. Sample 


If 


Set , otherwise set 


Xt

p0 ∼ 𝒩(0d, Id) q0 = Xt

l = 0,…, T − 1
Φ(1)

h = (Ψ(1)
h/2 ∘ Ψ(2)

h ∘ Ψ(1)
h/2) , Φ(l+1)

h = Φ(1)
h ∘ Φ(l)

h ,

Ψ(1)
t (q, p) = (q, p − t∇U(q)) ,

Ψ(2)
t (q, p) = (q + tp, p) ,

(q, p) ∈ (ℝd)2 t ≥ 0.

(qT, pT) = Φ(T)
h (q0, p0)

U* ∼ 𝒰([0,1])

U* ≤ min {1, exp [H(q0, p0) − H(qT, pT)]}
Xt+1 = qT Xt+1 = Xt .

7

Comparison of the Euler types and Leapfrog 
methods on the Gaussian case.


