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Geometrical setting

M ⊂ RD = smooth compact submanifold without boundary
⇝ support of our data

dim (M) = d < D : goal = dimension reduction

µ = d-dim Hausdorff measure (normalization : µ (M) = 1)
⇝ notion of densities wrt µ on M
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Statistical model

Regression with random design

yi = f0(xi ) + ϵi , ϵi
i .i .d∼ N

(
0, σ2

)
xi

i .i .d∼ p0 · µ, i = 1, . . . , n, p0 density wrt µ

⇝ here for simplicity σ > 0 is known
question : how can we efficiently estimate f0 ? In which sense ?
How fast ?
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General strategy

X = input space, f ∼ Π = prior distribution stochastic
process = random function

conditional on observing

yi = f0(xi ) + ϵi ⇐⇒ yi − f0(xi )
i .i .d∼ N

(
0, σ2

)
this gives a posterior distribution Π [·|Xn] on f ,
Xn = (xi , yi )

n
i=1

bonus : if Π = Gaussian process then Π [·|Xn] is also Gaussian
with explicit parameters

as n → ∞ then we expect ”contraction” of the posterior
Π [·|Xn] around f0 (in some sense)
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Illustration in 1D

Figure: source : scikit-learn.org
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Gaussian process regression

GPs are powerful Bayesian nonparametric priors for regression

as Bayesian methods they are especially interesting because
they come with a natural notion of uncertainty quantification
(sort of)

their statistical properties are now well understood through an
elegant theory

there has been recent developments on the construction of
GPs on non-Euclidean spaces such as graphs or manifolds
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Construction of stochastic processes on M

For our story :

if M = known : take a prior f ∼ Π defined on X = M and
condition on the observations

if M ⊂ RD = unknown : take a prior f ∼ Π defined on
X = RD and condition on the observations

⇝ we still expect contraction, but on M only
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How to quantify contraction

⇝ we want to find posterior contraction rates

E
(xi ,yi )

i.i.d∼ P0
Π
[
∥f − f0∥2L2(p0) |X

n
]
= O

(
ε2n
)

where

εn = some rate of convergence

P0(dxdy) = p0(x)µ(dx)N (dy |f0(x), σ2) true frequentist
distribution

∥f − f0∥2L2(p0) =
∫
M |f (x)− f0(x)|2 p0(x)µ(dx) choice of

metric
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Proof of contraction for Gaussian priors

mean zero : f ∼ GP (0,K ) ,K = a kernel over M or
RD ⇝ K (x , y) = E(f (x)f (y))
we usually need extra functional analytic properties on the
process in order to prove asymptotic properties ⇝ ”gaussian
random element” : fine in what follows

key : with f comes an RKHS H = completion of{∑p
i=1 aiK (xi , ·) : p ≥ 1, ai ∈ R, xi ∈ X

}
with

⟨K (x , ·),K (y , ·)⟩H = K (x , y)
together with f0, H essentially dictates the contraction rate
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idea : if f0 is ”well approximated” by elements of H with controlled
norms + H is not too ”funky” then contraction happens with good
rate

Two parts in the proof (inspired from Van der Vaart & Van Zanten
[4] )

1 we prove a contraction rate wrt

∥f − f0∥2n =
1

n

n∑
i=1

|f (xi )− f0(xi )|2

2 assuming Holder continuity for f0 + proving that our prior
processes are a posteriori essentially supported on functions
with Holder norms ”not too big” + a concentration inequality
we extrapolate

1

n

n∑
i=1

|f (xi )− f0(xi )|2 = O(ε2n)⇝ ∥f − f0∥2L2(p0) = O(ε2n)

11 / 24
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Intrinsic Matérn process : Laplace-Beltrami operator

Riemannian metric on M ⇝ notion of gradient ∇f for every
f ∈ D (M)

define the Laplacian operator :

∀f ∈ D (M) ,

∫
M

∆(f )fdµ =

∫
M

|∇f |2 dµ

⇝ generalizes −∆(f ) in RD

Then :

L2 = L2 (M, µ) =
⊕
j≥1

Hj ,Hj = ker (∆− λj IL2)

λj ≥ 0,Hj ⊂ D (M) , dim (Hj) <∞

⇝ notion of frequencies/Laplace-Fourier transform
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Intrinsic Matern process

M = known

f =
∑
j≥0

(1 + λj)
− s+d/2

2 Zjuj ,Zj
i .i .d∼ N (0, 1)⇝ a Gaussian process

H = Hs+d/2 (M) ⊂ L2 (M)

∥g∥2Hs+d/2(M) =
∑
j≥0

(1 + λj)
s+d/2 ⟨uj |g⟩2L2(M)

why ”Matern” ? ⇝ because the Matern GP in Rd also has an
RKHS isometric to Hs+d/2

(
Rd

)
+ same description as solutions

of SPDEs
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Posterior contraction

proof in action :

f0 ∈ Bβ
∞∞ (M) ∩ Hβ (M) =⇒ we can control the rate of

approximation of f0 by elements of H = Hs+d/2 (M) in sup
norm

the space Hs+d/2 (M) is not too ”funky” : follows for
instance by chart description of Sobolev spaces and known
results on Rd

we show in our work that f has a posteriori a Holder norm
that is ”not too big”

in practice : the sum needs to be truncated (handled in our
work) + eigendecomposition needs to be computed : either
algebraically (for manifolds with symmetries : see Azangulov & al

[2]) or numerically ⇝ final rate : ∀β ∧ s > d/2, εn ∼ n−
β∧s
2s+d
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Extrinsic Matern process

typically : M ⊂ RD = unknown

g = standard Matern GP on RD =⇒ Hg = Hs+D/2
(
RD

)
f = g|M = theoretical object

Theorem

Hf ≃ Hs+d/2 (M) i.e. Hf ≡ Hs+d/2 (M) and

∃C ≥ 1,∀g ∈ Hf ,C
−1 ∥g∥Hf

≤ ∥f ∥Hs+d/2(M) ≤ C ∥g∥Hf
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Proof.

1) Fact :

Hf =
{
g = h|M : h ∈ Hg

}
, ∥g∥Hf

= inf
g=h|M,h∈Hg

∥h∥Hg
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(
RD

)}
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Proof.

2) But actually by Grosse & Schneider [3]

Tr : f ∈ Hs+D/2
(
RD

)
→ f|M ∈ Hs+d/2 (M) = bounded

and we can construct a bounded right inverse
Tr ◦ Ex = IHs+d/2(M)

Ex : g ∈ Hs+d/2 (M) 7→ Ex (g) ∈ Hs+D/2
(
RD

)

17 / 24
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Consequence

1 =⇒ the RKHS of f|M is norm equivalent to the one of the
intrinsic process !

2 =⇒ they have the same contraction properties !

⇝ εn ∼ n−
β∧s
2s+d

in particular : the restriction of a Euclidean Matern process to a
submanifold M ⊂ RD of dimension d < D has a contraction rate
depending exponentially in d (not D !)
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Extension to Besov priors

sometimes : Holder/Sobolev assumptions are too restrictive

spatially inhomogeneous functions are known to be more
adequatly represented by some Besov spaces
Bs
pp (M) , p ∈ [1, 2)⇝ inverse problems, imaging..

actually Grosse & Schneider [3] give Tr : B
s+D/p
pp

(
RD

)
→

B
s+d/p
pp (M) ,Ex : B

s+d/p
pp (M) → B

s+D/p
pp

(
RD

)
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we can mimick the approach of GPs and RKHS using the
”p-exponential priors” of Agapiou & al [1] :

f =
∑
j≥1

ajZjuj ,Zj
i .i .d∼ fp

where fp(x) ∝ e−|x |p/p, aj ∈ R, (uj)j≥1 = Schauder basis of

C (X ) (here X = [0, 1]D)

problem : the restriction of a p-exponential prior is not
necessarily p-exponential ⇝ to conclude we consider
(uj) ⇐⇒ (ψjk)j≥1,k≤2jD = regular wavelet basis
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Theorem

In the fixed design regression model, if
f0 ∈ Bs

pp (M) , s > d/p, p ∈ [1, 2] and

f =
(
nϵ2n

)−1/p ∑
j≥1

2−j(s−d/p+D/2)
2jD∑
k=1

ξjkψjk , ξjk
i .i .d∼ fp

then

Π [∥f − f0∥n > Mϵn|Xn]
P∞
0−−−→

n→∞
0

for M > 0 large enough and ϵn ∝ n−
s

2s+d .

21 / 24
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idea : even if f|M is not a p-exponential process, we can always
consider

p#f =
(
nϵ2n

)−1/p ∑
j≥1

2−j(s−d/p+D/2)
∑
k∈Ij

ξjkψjk

where Ij = #
{
1 ≤ k ≤ 2jD : supp(ψjk) ∩M ≠ ∅

}
, which is always

p-exponentially distributed ; and using #Ij ≍ 2jd << 2jD +
trace/extension theorem allows us to replace D by d in the rate

22 / 24
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Conclusion & future work

Take home message :

two ways to construct priors for functions on manifolds :
intrinsically or extrinsically

as we saw : in somes cases the two methods may have similar
rates of contraction : differences stem from the constants

However

we do see differences of performance in practice

geometrical/intrinsic methods tend to perform better in the
low data regime

Possible extensions

similar result for the square exponential kernel ?

adaptivity : ok for intrinsic, what about extrinsic ?
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Thank you !
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