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~~ support of our data

e M C RP = smooth compact submanifold without boundary
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Statistical model

Regression with random design

yi = fo(x;) + i, e A7 (0,0?)
i.d

X; ;,dp().M,i:l,...,n,po density wrt u

~> here for simplicity o > 0 is known
question : how can we efficiently estimate fy 7 In which sense 7
How fast ?
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process = random function

o X = input space, f ~ 1 = prior distribution stochastic
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General strategy

@ X = input space, f ~ [1 = prior distribution stochastic
process = random function

@ conditional on observing
yi = h(x)+ e < yi—flx) EN (0,0%)

this gives a posterior distribution M [-|X"] on f,
X" = (Xl'vyi)7:1
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General strategy

@ X = input space, f ~ [1 = prior distribution stochastic
process = random function

@ conditional on observing
yi = hix) + e = yi—folq) N (0,0%)
this gives a posterior distribution M [-|X"] on f,
X" = (Xl'vyi)7:1

@ bonus : if 1 = Gaussian process then I1[-|X"] is also Gaussian
with explicit parameters

@ as n — oo then we expect " contraction” of the posterior
M[-|X"] around fy (in some sense)
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Figure: source : scikit-learn.org

Matérn kernel

Samples from prior di

Samples from posterior di

ampled function #1
Sampled function #2
‘Sampled function #3
‘Sampled function #4
sampled function #5

+1std. dev.
Observations.
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@ GPs are powerful Bayesian nonparametric priors for regression
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Gaussian process regression

@ GPs are powerful Bayesian nonparametric priors for regression

@ as Bayesian methods they are especially interesting because
they come with a natural notion of uncertainty quantification
(sort of)

@ their statistical properties are now well understood through an
elegant theory

@ there has been recent developments on the construction of
GPs on non-Euclidean spaces such as graphs or manifolds
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Construction of stochastic processes on M

For our story :
@ if M = known : take a prior f ~ [1 defined on X = M and
condition on the observations
o if M C RP = unknown : take a prior f ~ I defined on
X = RP and condition on the observations

~> we still expect contraction, but on M only
8/24
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where

(xivi) = Po 1 [
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~~ we want to find posterior contraction rates

(Xi,}’i)i"Q’dPon [Hf B fb“%Z(p") |X”] =0 (6%)
where

@ ¢, = some rate of convergence
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How to quantify contraction

~» we want to find posterior contraction rates
E i T = foll o X" = O (€2)
(xinyi) AP L2(po) n
where

@ £, = some rate of convergence

o Po(dxdy) = po(x)u(dx)N (dy|fo(x),a?) true frequentist
distribution
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How to quantify contraction

~» we want to find posterior contraction rates
E i T = foll o X" = O (€2)
(xioyi) 7Py L2(po) n
where

@ £, = some rate of convergence

o Po(dxdy) = po(x)u(dx)N (dy|fo(x),a?) true frequentist
distribution

0 1F ~ 22 = S |F(x) — ()1 polx)p(e) choice of
metric
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@ mean zero : f ~ GP(0,K), K = a kernel over M or
R~ K(x,y) = E(f(x)f(y))
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Proof of contraction for Gaussian priors

@ mean zero : f ~ GP(0,K),K = a kernel over M or
RP ~ K(x,y) = E(f(x)f(y))

@ we usually need extra functional analytic properties on the
process in order to prove asymptotic properties ~» " gaussian
random element” : fine in what follows

10/24



Geometrical & statistical setting
Gaussian process regression
Matérn processes

Extension to Besov priors
Conclusion & future work

Proof of contraction for Gaussian priors

@ mean zero : f ~ GP(0,K),K = a kernel over M or
RP ~ K(x,y) = E(f(x)f(y))

@ we usually need extra functional analytic properties on the
process in order to prove asymptotic properties ~» " gaussian
random element” : fine in what follows

@ key : with f comes an RKHS H = completion of
{>F aiK(xi,") : p>1,a; € R,x; € X} with

<K(X7 ')7 K(y7 )>H = K(X7y)
together with fy, H essentially dictates the contraction rate
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idea : if fy is "well approximated” by elements of H with controlled

norms + H is not too "funky" then contraction happens with good
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idea : if fy is "well approximated” by elements of H with controlled
norms + H is not too "funky” then contraction happens with good
rate
Two parts in the proof (inspired from Van der Vaart & Van Zanten
[4] )

© we prove a contraction rate wrt
1 n
2 2
|f —fol|;, = - z; [f(xi) — fo(x;)]
1=

@ assuming Holder continuity for fy 4+ proving that our prior
processes are a posteriori essentially supported on functions
with Holder norms "not too big” + a concentration inequality
we extrapolate

1 n
- D 1F00) = fo(xi)[* = O(7) ~ I = follfz(py) = OLeR)
i=1
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~~ generalizes —A (f) in RP
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Intrinsic Matérn process : Laplace-Beltrami operator

@ Riemannian metric on M ~- notion of gradient Vf for every
feD(M)

o define the Laplacian operator :
erD(M),/ A(f)fdu:/ IVFI? du
M M
~~ generalizes —A (f) in RP
@ Then:
2= 1> (M, p) = P H;. Hj = ker (A — \jl2)

j>1
Aj>0,H; C D(M),dim(H;) < oo

~~ notion of frequencies/Laplace-Fourier transform
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M = known

Jj>0

f= Z(l + A )__L Ziuj, Z; 'i'dN(O 1) ~~ a Gaussian process
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M = known

j>0

_____L_
F=Y (1+X) Ziu;, Z; 'K

i.i.d

N (0,1) ~~ a Gaussian process

H = H+ 42 (M) c 12 (M)
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Intrinsic Matern process

M = known
_s+d/2 i.i.d :
f= Z(l + X)) 7 Zjuj, Z; '~ N(0,1) ~» a Gaussian process
j=0

H = H+92 (M) ¢ [2(M)

HgHisw/z(M) = Z (1+ )\j)s+d/2 <uj‘g>%2(/\/l)
j>0
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Intrinsic Matern process

M = known
f= Z(l + A ) =2z iuj, Zj ”Nd/\/'(O, 1) ~» a Gaussian process
j=0

H = H+92 (M) ¢ [2(M)

HgHi{sw/z(M) = Z (1+ )\j)s+d/2 <uj‘g>%2(/\/{)
j>0

why "Matern” 7 ~» because the Matern GP in R also has an
RKHS isometric to H5t9/2 (Rd) + same description as solutions
of SPDEs

13/24
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o fo € BY o (M)N HP (M) = we can control the rate of
approximation of fy by elements of H = H579/2 (M) in sup
norm
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o fo € BY o (M)N HP (M) = we can control the rate of
approximation of fy by elements of H = H579/2 (M) in sup
norm

o the space Ht9/2 (M) is not too "funky” : follows for
instance by chart description of Sobolev spaces and known
results on R

@ we show in our work that f has a posteriori a Holder norm
that is " not too big"”

in practice : the sum needs to be truncated (handled in our
work) + eigendecomposition needs to be computed : either
algebraically (for manifolds with symmetries : see Azangulov & al

[2]) or numerically
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Posterior contraction

proof in action :

o fo € BY o (M)N HP (M) = we can control the rate of
approximation of fy by elements of H = H579/2 (M) in sup
norm

o the space Ht9/2 (M) is not too "funky” : follows for
instance by chart description of Sobolev spaces and known
results on R

@ we show in our work that f has a posteriori a Holder norm
that is " not too big"”

in practice : the sum needs to be truncated (handled in our
work) + eigendecomposition needs to be computed : either
algebraically (for manifolds with symmetries : see Azangulov & al

BAs
[2]) or numerically ~~ final rate : VG As > d /2,6, ~ n 2s7d
14/24
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Extrinsic Matern process

typically : M C RP = unknown
o g = standard Matern GP on R = H, = H*+D/2 (RD)
e f = gz = theoretical object

Hf ~ H5t9/2 (M) i.e. Hf = H579/2 (M) and

3C > 1,Vg € Hr, C 1 gy, < £l gs+arzrny < Cllg N,
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Theorem
Hf ~ H5t9/2 (M) i.e. Hf = H579/2 (M) and

3C > 1,Vg € Hy, C ' glly, < £l gs+arzpry < Cllg N,

Proof.
1) Fact:
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Theorem
Hf ~ H5t9/2 (M) i.e. Hf = H579/2 (M) and

3C > 1,Vg € Hy, C ' glly, < £l gs+arzpry < Cllg N,

Proof.
1) Fact:

Hy = {g =N hEHg) gl = _inf I,

— My ={g=hp:he 02 (RP)}

= inf h
Hg”Eb g:mﬁmhéZyHN20RD)H ”fF+Dp(RD)
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Proof.
2) But actually by Grosse & Schneider [3]

Tr: f € HS+P/2 (RD) — fipg € HH92 (M) = bounded

and we can construct a bounded right inverse
Tr O EX ES IH5+d/2(M)

Ex:g e H 92 (M) — Ex(g) € H*TP/2 (RD)

17 /24
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Consequence
@ = the RKHS of i\ is norm equivalent to the one of the
intrinsic process !

©@ — they have the same contraction properties !
BAs
~> Ep~ N 2std

in particular : the restriction of a Euclidean Matern process to a
submanifold M C RP of dimension d < D has a contraction rate
depending exponentially in d (not D !)

18/24
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@ sometimes : Holder/Sobolev assumptions are too restrictive

@ spatially inhomogeneous functions are known to be more
adequatly represented by some Besov spaces
B;, (M), p € [1,2) ~ inverse problems, imaging..
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Extension to Besov priors

@ sometimes : Holder/Sobolev assumptions are too restrictive

@ spatially inhomogeneous functions are known to be more
adequatly represented by some Besov spaces
B;, (M), p € [1,2) ~ inverse problems, imaging..

o actually Grosse & Schneider [3] give Tr : Bgg /P (RP) —
Bas /P (M), Bx: B3/ (M) = B PP (RP)
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@ we can mimick the approach of GPs and RKHS using the
" p-exponential priors” of Agapiou & al [1] :

i.i.d
f=) aZu,Z '~ f,
j>1

where f,(x) oc e XI°/P a; € R, (u}) .-, = Schauder basis of

C (X) (here X =0,1]P) j>1
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@ we can mimick the approach of GPs and RKHS using the
" p-exponential priors” of Agapiou & al [1] :

i.i.d
f=) aZu,Z '~ f,
j>1

where f,(x) oc e XI°/P a2 € R, (uj);>1 = Schauder basis of
C (X) (here X =[0,1]P)

@ problem : the restriction of a p-exponential prior is not
necessarily p-exponential ~» to conclude we consider
(v) = (wjk)jZLkSZjD = regular wavelet basis

20/24
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Theorem

In the fixed design regression model, if
fo € By, (M),s >d/p,p € [L,2] and

2/b
-1 —j(s— ii.d
f= (ne%) /pZQ i(s d/”+D/2)Z§jk¢jk,£jk A7 f,
j>1 k=1

then poo
NI = fll, > MealX7] —2 0

for M > 0 large enough and €, n" %,
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idea : even if fi\( is not a p-exponential process, we can always
consider

#f— ne /pZQ_J(S d/p+D/2)Z§kak

j>1 kel;

where Ij = # {1 < k < 2P : supp(y) N M # 0}, which is always
p-exponentially distributed ; and using #/; < 2/d << 2D 1
trace/extension theorem allows us to replace D by d in the rate
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Take home message :

@ two ways to construct priors for functions on manifolds :
intrinsically or extrinsically

@ as we saw : in somes cases the two methods may have similar
rates of contraction : differences stem from the constants

However
e we do see differences of performance in practice

@ geometrical/intrinsic methods tend to perform better in the
low data regime

Possible extensions
@ similar result for the square exponential kernel ?

@ adaptivity : ok for intrinsic, what about extrinsic ?
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