Presentation of CoOP-LBM 00000	Inference 000	Application on simulated data	Application on real data

Corrected Observation Process for Latent Block Model

Emre Anakok

directed by Pierre Barbillon, Colin Fontaine & Elisa Thebault

August 29, 2022

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction

Bipartite graph, Data from Olesenet al, 2002

Presentation of CoOP-LBM 00000	Inference 000	Application on simulated data	Application on real data

Introduction

- Contingency table $M_{i,j}$ of size $n_1 \times n_2$
- Structure of the contingency matrix?

Contingency data from Lara-Romero et al, 2016

Presentation of CoOP-LBM 00000	Inference 000	Application on simulated data	Application on real data

LBM model

- For rows : a species *i* is in a group $K_i \in \{1, \ldots, Q_1\}$
- ▶ For columns : a species j is in a group $L_j \in \{1, ..., Q_2\}$
- First approach : $M_{i,j}|(K_i = k, L_j = l) \sim \mathcal{B}(\pi_{k,l})$

SBM package on R computes the parameters and chooses the best number of groups with the ICL criterion.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Presentation of CoOP-LBM

Inference

Application on simulated data

Application on real data

Simulation and sampling example

• Assumption : $K = L = 1, \pi_{k,l} = c_0$

Complete network $M_{i,j}$

Subsampled network $R_{i,j}$ (70%)

Emre Anakok directed by Pierre Barbillon, Colin Fontaine & Elisa Thebault

Presentation of CoOP-LBM	Inference 000	Application on simulated data	Application on real data

SBM on example

Fitting a SBM model on data doesn't yield the same result

SBM fit on $M_{i,j}$

SBM fit on *R_{i,j}* < ロト 4回ト 4 ミト 4 ミト ミ のへで

Emre Anakok directed by Pierre Barbillon, Colin Fontaine & Elisa Thebault

イロト イボト イヨト イヨト

3

Table of Contents

Presentation of CoOP-LBM

Inference

Application on simulated data

Application on real data

Presentation of CoOP-LBM •0000	Inference 000	Application on simulated data	Application on real data

イロン イ団 と イヨン イヨン

2

Outline

Presentation of CoOP-LBM

Inference

Application on simulated data

Application on real data

Contingency table format

The following method can't work with binary contingency table.

Frequency data is needed.

イロト イボト イヨト イヨト

3

Inferenc

Application on simulated data

Application on real data 00000

CoOP-LBM

Sampling scheme

 $\begin{array}{l} \mathcal{M} \sim \mathsf{LBM}\;(\alpha,\beta,\pi)\\ \sum \alpha = \sum \beta = 1, \quad \pi \in]0,1[^{Q_1 \times Q_2}\\ \text{with latent variable } Z^1, Z^2 \end{array}$

 $egin{aligned} & \mathcal{N} \sim \text{Sampling scheme} \ & \mathcal{P}(\lambda_i \mu_j \mathcal{G}) \ & \lambda_i, \mu_j \in]0, 1], \mathcal{G} > 0 \end{aligned}$

イロト イポト イヨト イヨト

$$R_{i,j} = M_{i,j} \times N_{i,j}$$

Emre Anakok directed by Pierre Barbillon, Colin Fontaine & Elisa Thebault

CoOP-LBM

- $M \sim \text{LBM}$ of parameters $\theta_M = (\alpha, \beta, \pi)$
- $N \sim \text{Sampling scheme of parameters } \theta_N = (\lambda, \mu, G)$
- ▶ $R \sim \text{CoOP-LBM}$ of parameters $\theta = (\theta_M, \theta_N)$ if $R_{i,j} = M_{i,j} \times N_{i,j}$

イロン イヨン イヨン イヨン

э.

M and N are supposed independent.

 $R_{i,j}$ can be equal to 0 for 2 reasons :

- Forbidden interaction : $M_{i,j} = 0$
- Missed interaction : $N_{i,j} = 0$

CoOP-LBM log-likelihood

The log-likelihood given Z^1 and Z^2 can be written as

$$\log \mathcal{L}(R, \theta, Z^1, Z^2) = \log \mathcal{L}(\theta, Z^1) + \log \mathcal{L}(\theta, Z^2) + \log \mathcal{L}(R, \theta | Z^1, Z^2)$$

The observed likelihood is then written :

$$\log \mathcal{L} = \sum_{(Z^1, Z^2) \in (\mathcal{Z}^1, \mathcal{Z}^2)} \log \mathcal{L}(R, \theta, Z^1, Z^2).$$

イロト イボト イヨト イヨト

Ξ.

As the LBM, the sum is intractable.

Presentation of CoOP-LBM 00000	Inference ●00	Application on simulated data	Application on real data

イロト イロト イヨト イヨト

2

Outline

Presentation of CoOP-LBM

Inference

Application on simulated data

Application on real data

Presentation of CoOP-LBM 00000	Inference ○●○	Application on simulated data	Application on real data

Algorithm 1: Stochastic EM for CoOP-LBM inference

Initialisation :
$$Z_{(0)}^1, Z_{(0)}^2, \pi_{(0)}, \tilde{M}_{(0)}$$

repeat

1. M-step a) : update
$$\alpha_{(n+1)}, \beta_{(n+1)}|Z^1_{(n)}, Z^2_{(n)}|$$

- 2. M-step b) : update $\lambda_{(n+1)}, \mu_{(n+1)}, G_{(n+1)}|\tilde{M}_{(n)}|$
- 3. S-step a) : simulate $\tilde{M}_{(n+1)}|Z_{(n)}^1, Z_{(n)}^2, \pi_{(n)}, \lambda_{(n+1)}, \mu_{(n+1)}, G_{(n+1)}$
- 4. M-step c) : update $\pi_{(n+1)}| ilde{M}_{(n+1)},Z^1_{(n)},Z^2_{(n)}$
- 5. S-step b) : simulate $Z_{(n+1)}^1, Z_{(n+1)}^2 | \alpha_{(n+1)}, \beta_{(n+1)}, \pi_{(n+1)}, \tilde{M}_{(n+1)}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

until Number of iterations reached

 $\tilde{M}_{(n)}$ is a matrix where missing interaction are simulated with a Bernoulli variable of probability $\mathbb{P}(M_{i,j} = 1 | R_{i,j} = 0)$.

Particularity of the algorithm

M-step b) : λ, μ, G are updated with a fixed point algorithm.
S-step a) :

$$\mathbb{P}(M_{i,j} = 1 | R_{i,j} = 0, \lambda_i, \mu_j, G, \pi, Z_{ik}^1 = 1, Z_{jl}^2 = 1) = \frac{\pi_{kl} e^{-\lambda_i \mu_j G}}{1 - \pi_{kl} (1 - e^{-\lambda_i \mu_j G})}$$

S-step b) :

$$\mathbb{P}(Z_{ik}^1=1|R,\theta,Z^2)\propto \mathbb{P}(R|\theta,Z_{ik}^1=1)\mathbb{P}(Z_{ik}^1=1)$$

イロン イヨン イヨン イヨン

Ξ.

Model selection

ICL criterion :

$$ICL(m_{Q_1,Q_2}) = \max_{\theta} \mathcal{L}(R, \widehat{Z^1}, \widehat{Z^2} | \theta, m_{Q_1,Q_2}) \\ - \frac{Q_1 - 1}{2} \log(n_1) - \frac{Q_2 - 1}{2} \log(n_2) - \frac{Q_1 Q_2 + n_1 + n_2 - 1}{2} \log(n_1 n_2)$$

イロト イロト イヨト イヨト

ъ.

Presentation of CoOP-LBM	Inference	Application on simulated data	Application on real data
00000	000	•0000	

イロン イ団 と イヨン イヨン

2

Outline

Presentation of CoOP-LBM

Inference

Application on simulated data

Application on real data

Presentation of CoOP-LBM	Inference	Application on simulated data	Application on real data
00000	000	○●○○○	

Settings

Beta(0.3,1.5) distribution

Beta distribution for λ, μ

Contingency matrix M

Emre Anakok directed by Pierre Barbillon, Colin Fontaine & Elisa Thebault

Presentation of CoOP-LBM	Inference 000	Application on simulated data 00●00	Application on real data
ARI score			

Figure - ARI score for rows and columns when the number of groups is unknown

Emre Anakok directed by Pierre Barbillon, Colin Fontaine & Elisa Thebault

entation of CoOP-LBM Inference Appli

Application on simulated data 00000

Application on real data

Number of groups estimated

Estimated Q_1 for LBM

Estimated Q_1 for CoOP-LBM

Estimated Q_2 for LBM

Estimated Q_2 for CoOP-LBM

Emre Anakok directed by Pierre Barbillon, Colin Fontaine & Elisa Thebault

Presentation of CoOP-LBM 00000	Inference 000	Application on simulated data	Application on real data

AUC on missing data

AUC for missing data

Figure – AUC of the ROC for the missing data

Emre Anakok directed by Pierre Barbillon, Colin Fontaine & Elisa Thebault

Presentation of CoOP-LBM	Inference	Application on simulated data	Application on real data
00000	000		●0000

イロト イロト イヨト イヨト

2

Outline

Presentation of CoOP-LBM

Inference

Application on simulated data

Application on real data

Data presentation

 Olesen et al., 2002 : Invasion of pollination networks on oceanic islands : importance of invader complexes and endemic super generalists

・ 同 ト ・ ヨ ト ・ ヨ ト

- ▶ 14 species of plants, 13 species of insects.
- 1395 interactions observed.

Presentation of CoOP-LBM	Inference 000	Application on simulated data	Application on real data

Fitting models on the network

< ロ > < 同 > < 回 > < 回 > < 回 > <

æ

Only difference is observed for the insect species Lycaenidae pirithous

Presentation of CoOP-LBM	Inference	Application on simulated data	Application on real da
00000	000		000€0

Estimated coverage

Boraginaceae argentea	0.8493672
Asparagaceae concinna	0.8007462
Araliaceae mauritiana	0.9998364
Malvaceae tiliaceus	0.8137610
Convolvulaceae macrantha	0.6746022
Fabaceae leucocephala	0.8028505
Rubiaceae citrifolia	0.9993632
Passifloraceae suberosa	0.7164068
Lythraceae acidula	0.9952563
Goodeniaceae sericea	0.8680551
Surianaceae maritima	0.9703093
Malvaceae populnea	0.8608773
Verbenaceae jamaicencis	0.9348724
Turneraceae angustifolia	0.7207160

Apidae mellifera	0.9997752
Hesperiidae borbonica	0.9227533
Lycaenidae pirithous	0.4642996
Muscidae sp.	0.8855992
Megachilidae sp.	0.9971414
Muscidae domestica	0.9371763
Syrphidae obesa	0.8847282
Nymphalidae phalantha	1.0000000
Gekkonidae ornata	0.9452383
Cetoniidae aurichalcea	0.8761673
Stratiomyidae sp.	0.9988445
Syrphidae sp.	0.9876197
Apidae fenestrata	0.9964598
Megachilidae sp. Muscidae domestica Syrphidae obesa Nymphalidae phalantha Gekkonidae ornata Cetoniidae aurichalcea Stratiomyidae sp. Syrphidae sp. Apidae fenestrata	0.9971414 0.9371763 0.8847282 1.0000000 0.9452383 0.8761673 0.9988445 0.9876197 0.9964598

回 と く ヨ と く ヨ と

ъ.

ta

Lycaenidae pirithous has been observed only 7 times on 5 different flowers.

Conclusion

- CoOP-LBM has better result than SBM in our simulation settings and on real data.
- It can change our perception of networks by correcting the structure.

イロト イポト イヨト イヨト

3

Available soon in a R package.